Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Long non-coding RNAs (lncRNAs) play a significant biological role in the regulation of various cellular processes such as cell proliferation, differentiation, apoptosis and migration. In various malignancies, lncRNAs interplay with some main cancer-associated signaling pathways, including the Hippo signaling pathway to regulate the various cellular processes. It has been revealed that the cross-talking between lncRNAs and Hippo signaling pathway involves in gastrointestinal (GI) cancers development and progression. Considering the clinical significance of these lncRNAs, they have also been introduced as potential biomarkers in diagnostic, prognostic and therapeutic strategies in GI cancers. Herein, we review the mechanisms of lncRNA-mediated regulation of Hippo signaling pathway and focus on the corresponding molecular mechanisms and clinical significance of these non-coding RNAs in GI cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788524PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23826DOI Listing

Publication Analysis

Top Keywords

hippo signaling
16
signaling pathway
16
non-coding rnas
12
clinical significance
12
long non-coding
8
gastrointestinal cancers
8
molecular mechanisms
8
mechanisms clinical
8
cellular processes
8
signaling
5

Similar Publications

The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.

View Article and Find Full Text PDF

Purpose: Combinatorial therapies are essential for treating advanced non-small cell lung cancer (NSCLC), particularly overcoming resistance to third-generation epidermal growth factor receptor (EGFR) like osimertinib (OSI). The Hippo signaling pathway, a critical regulator of cell proliferation, apoptosis, and tumor progression, is often dysregulated in NSCLC and contributes to chemo-resistance. This study investigated the potential of epigallocatechin-3-gallate (EGCG), a green tea polyphenol, to overcome OSI resistance by modulating the Hippo signaling pathway, specifically through inhibition of the YAP-1 (Yes-associated protein)-TEAD (TEA domain transcription factor)-CTGF (connective tissue growth factor) axis.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.

View Article and Find Full Text PDF

The increased presence of goblet epithelial cells in conducting airways of the respiratory system is common in pulmonary disorders and is often accompanied by disrupted immune and alveolar responses. Signaling effectors that restrict goblet cell production include YAP and TAZ, transcriptional regulators of Hippo signaling, which repress goblet cell differentiation in the airway epithelium. Here, we investigated the acute responses to goblet cell metaplasia that are induced by the conditional loss of YAP/TAZ in club epithelial cells of adult mouse lungs.

View Article and Find Full Text PDF