Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While posttraumatic stress disorder (PTSD) is known to associate with an elevated risk for major adverse cardiovascular events (MACE), few studies have examined mechanisms underlying this link. Recent studies have demonstrated that neuro-immune mechanisms, (manifested by heightened stress-associated neural activity (SNA), autonomic nervous system activity, and inflammation), link common stress syndromes to MACE. However, it is unknown if neuro-immune mechanisms similarly link PTSD to MACE. The current study aimed to test the hypothesis that upregulated neuro-immune mechanisms increase MACE risk among individuals with PTSD. This study included N = 118,827 participants from a large hospital-based biobank. Demographic, diagnostic, and medical history data collected from the biobank. SNA (n = 1,520), heart rate variability (HRV; [n = 11,463]), and high sensitivity C-reactive protein (hs-CRP; [n = 15,164]) were obtained for a subset of participants. PTSD predicted MACE after adjusting for traditional MACE risk factors (hazard ratio (HR) [95 % confidence interval (CI)] = 1.317 [1.098, 1.580], β = 0.276, p = 0.003). The PTSD-to-MACE association was mediated by SNA (CI = 0.005, 0.133, p < 0.05), HRV (CI = 0.024, 0.056, p < 0.05), and hs-CRP (CI = 0.010, 0.040, p < 0.05). This study provides evidence that neuro-immune pathways may play important roles in the mechanisms linking PTSD to MACE. Future studies are needed to determine if these markers are relevant targets for PTSD treatment and if improvements in SNA, HRV, and hs-CRP associate with reduced MACE risk in this patient population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10932910PMC
http://dx.doi.org/10.1016/j.bbi.2024.01.006DOI Listing

Publication Analysis

Top Keywords

neuro-immune mechanisms
12
risk major
8
major adverse
8
adverse cardiovascular
8
cardiovascular events
8
mace risk
8
mace
6
ptsd
5
ptsd increases
4
risk
4

Similar Publications

Mixed chronic scrotal pain secondary to piriformis scarring treated with PRF: case report.

Front Med (Lausanne)

August 2025

Department of Anesthesiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

In the complex pathological context of mixed pain, where nociceptive, neuropathic, and nociplastic mechanisms coexist and interact, we present an innovative diagnostic and therapeutic model for refractory chronic scrotal pain (CSP) in a 49-year-old man. The pain originated from pudendal nerve entrapment secondary to piriformis scarring. Comprehensive evaluation revealed mixed pain mechanisms: neuropathic (lancinating pain, S2-S4 dermatomal hypoesthesia, and MRI-confirmed nerve compression), nociceptive (MRI-documented proven inflammation and mechanical stress exacerbation), and nociplastic (central sensitization with prolonged pain duration and psychological comorbidities).

View Article and Find Full Text PDF

Sensory neurons shape local macrophage identity via TGF-β signaling.

Immunity

September 2025

Institute for Infection Control and Prevention, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center and Fa

Resident macrophages play integral roles in maintaining tissue homeostasis and function. In the skin, prenatally seeded, specialized macrophages patrol sensory nerves and contribute to their regeneration after injury. However, mechanisms underlying the long-lasting postnatal commitment of these nerve-associated macrophages remain largely elusive.

View Article and Find Full Text PDF

Bone marrow immune remodeling in depression: TNF/NF-κB mediated leukocyte redistribution and construction of an interpretable predictive model.

Int Immunopharmacol

September 2025

Hebei Medical University Postdoctoral Research Station in Basic Medicine, No. 361 Zhongshan Dong Road, 050017 Shijiazhuang, China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical Univ

Environmental stress contributes to the development of depression through neuro-immune interactions, yet the underlying molecular mechanisms and associated clinical diagnostic biomarkers remain unclear. We established a psychosocial stress mouse model and systematically investigated the immune dysregulation induced by stress through integrated analysis of blood cell profiles, leukocyte transcriptomics, protein-protein interaction networks, single-cell RNA sequencing, and targeted pharmacological intervention. Additionally, we constructed and validated a depression predictive model using multiparametric peripheral blood data and machine learning, and assessed feature importance using the SHapley Additive exPlanations (SHAP) analysis.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains a devastating malignancy characterized by profound lethality, aggressive local invasion, dismal prognosis, and significant resistance to existing therapies. Two critical biological features underpin the challenges in treating PDAC: extensive perineural invasion (PNI), the process by which cancer cells infiltrate and migrate along nerves, and a profoundly immunosuppressive, or "cold," tumor microenvironment (TME). PNI is not only a primary route for local tumor dissemination and recurrence but also a major contributor to the severe pain often experienced by patients.

View Article and Find Full Text PDF

Inactivation of LHA neurons relieves stress-induced intestine inflammation by sympathetic nerve- intestinal epithelial cell Cxcl1 communication.

Cytokine

September 2025

Department of Child and Adolescent Health, School of Public Health, Bengbu Medical University, No. 2600 Donghai Avenue Bengbu, Anhui, People's Republic of China; Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China; Shanghai Key Labo

Purpose: This study aimed to elucidate the role of lateral hypothalamic area (LHA) Vglut2 neurons in stress-induced intestinal inflammation and to investigate the underlying mechanisms involving neuro-immune interactions. Specifically, we hypothesized that LHA Vglut2 neuron activation exacerbates intestinal inflammation via sympathetic-driven IL-1β and Cxcl1 signaling.

Methods: Transgenic mice (Vglut2-cre) and wild-type controls were subjected to chronic restraint stress (CRS).

View Article and Find Full Text PDF