Recyclable -Heterocyclic Carbene Porous Coordination Polymers with Two Distinct Metal Sites for Transformation of CO to Cyclic Carbonates.

Inorg Chem

Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-component catalysts with integrated multiple reactive centers could work in concert to achieve enhanced activity tailored for specific catalytic reactions, but they remain underdeveloped. Herein, we report the construction of heterogeneous bimetallic porous coordination polymers (PCPs) containing both porphyrin and -heterocyclic carbene (NHC) metal sites via the coordinative assembly of the NHC functionalities. Three heterobimetallic PCPs (, and ) have been prepared to verify this facile synthetic strategy for the first time. In order to establish a cooperative action toward the catalytic CO cycloaddition with epoxides, an additional tetraalkylammonium bromide functionality has also been incorporated into these polymeric structures through the -substituent of the NHC moieties. The resulting heterogeneous bimetallic catalyst exhibits the best catalytic performance in CO cycloaddition with styrene oxide (SO) under solvent-free conditions at atmospheric pressure and is applicable to a wide range of epoxides. More importantly, works smoothly and is recyclable in the absence of a cocatalyst under 1.0 MPa of CO at 60 °C. This indicates that is quite competitive with the reported heterogeneous catalysts, which typically require a high reaction temperature above 100 °C under cocatalyst-free conditions. Thus, this work provides a new approach to design heterogeneous bimetallic PCP catalysts for high-performance CO fixation under mild reaction conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c03390DOI Listing

Publication Analysis

Top Keywords

heterogeneous bimetallic
12
-heterocyclic carbene
8
porous coordination
8
coordination polymers
8
metal sites
8
recyclable -heterocyclic
4
carbene porous
4
polymers distinct
4
distinct metal
4
sites transformation
4

Similar Publications

This study developed heterogeneous catalysts composed of ZnO and CeO supported on H-ZSM-5 for the direct conversion of methane (CH) and carbon dioxide (CO) into acetic acid. The acid-base and electronic properties were modulated through oxide impregnation and reduction, aiming to create active sites capable of simultaneously activating both reactants. The samples were characterized by XRD, N physisorption, HRTEM/EDS, NH-TPD, CO-TPD, TPR, FTIR, XPS, CO-DRIFTS, and TGA, and tested in a batch reactor at 300 °C and 10 bar.

View Article and Find Full Text PDF

Construction of Zeolite Framework-Anchored Rh-(O-Zn) Sites for Ethylene Hydroformylation.

J Am Chem Soc

September 2025

National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.

View Article and Find Full Text PDF

Nanogranular films obtained by the soft assembly of atomic clusters feature functional properties that are of interest in a variety of fields, ranging from gas sensing to neuromorphic computing, heterogeneous catalysis and the biomedical sector. Bimetallic nanogranular films, combining a post-transition metal (tin) and a catalytic metal (platinum), were produced using supersonic cluster beam deposition. By operating the cluster source with a double-rod cathode or sintered cathode configuration, completely different nanostructures were obtained.

View Article and Find Full Text PDF

Oriented near-surface catalytic oxidation through strengthening surface-localized radical generation over CoFe bimetallic sites: Synergistic mechanism and electro-assisted regeneration.

J Colloid Interface Sci

August 2025

College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China. Electronic address:

Nanocatalysts-catalyzed heterogeneous advanced oxidation process offers a promising option for decentralized wastewater treatment, whereas free reactive oxygen species (ROS) suffer from ultrashort lifetime and self-quenching effect. Herein, bimetallic CoFe-layered double hydroxide nanorods are synthesized over three-dimensional conductive nickel foam (CoFe-LDHs/NF) to achieve high proportion of surface-localized ROS by peroxymonosulfate (PMS) activation. The Fe incorporation motivates electron redistribution of Co-Fe dual metal sites in stoichiometrically-optimized CoFe-LDHs/NF, and promotes the binding affinity of Co sites for surface complexed PMS and ROS.

View Article and Find Full Text PDF

Borneol, a pharmaceutically important monoterpenoid, has emerged as a key ingredient in modern medicinal formulations. Here, we report a highly efficient heterogeneous catalytic system using transition metal-doped Co/TiO catalysts for the continuous-flow isomerization of isoborneol to borneol. Through systematic screening of bimetallic combinations, we demonstrate that Cu and Ni dopants synergistically enhance the redox properties of Co species, particularly improving hydrogenation-dehydrogenation efficiency in the isomerization of isoborneol.

View Article and Find Full Text PDF