98%
921
2 minutes
20
The Staphylococcus aureus clumping factor A (ClfA) is a fibrinogen (Fg) binding protein that plays an important role in the clumping of S. aureus in blood plasma. The current anti-infective approaches targeting ClfA are mainly based on monoclonal antibodies but showed less impressive efficacy for clinical applications. Nanobodies offer advantages in enhanced tissue penetration and a propensity to bind small epitopes. However, there is no report on generating specific nanobodies for ClfA. Here, we constructed a synthetic nanobody library based on yeast surface display to isolate nanobodies against the Fg binding domain ClfA. We firstly obtained a primary nanobody directed to ClfA, and then employed error-prone mutagenesis to enhance its binding affinity. Finally, 18 variants were isolated with high affinities (EC50, 1.1 ± 0.1 nM to 4.8 ± 0.3 nM), in which CNb1 presented the highest inhibition efficiency in the adhesion of S. aureus to fibrinogen. Moreover, structural simulation analysis indicated that the epitope for CNb1 partially overlapped with the binding sites for fibrinogen, thus inhibiting ClfA binding to Fg. Overall, these results indicated that the specific nanobodies generated here could prevent the adhesion of S. aureus to fibrinogen, suggesting their potential capacities in the control of S. aureus infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129208 | DOI Listing |
BMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.
View Article and Find Full Text PDFMed Lett Drugs Ther
September 2025
Int J Pharm
September 2025
Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China. Electronic address:
Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.
View Article and Find Full Text PDF