98%
921
2 minutes
20
Aerogels are unique and extremely porous substances with fascinating characteristics such as ultra-low density, extraordinary surface area, and excellent thermal insulation capabilities. Due to their exceptional features, aerogels have attracted significant interest from various fields, including energy, environment, aerospace, and biomedical engineering. This review paper presents an overview of the trailblazing research on aerogels, aiming at their preparation, characterization, and applications. Various methods of aerogel synthesis, such as sol-gel, supercritical drying, are discussed. Additionally, recent progress in the characterization of aerogel structures, including their morphology, porosity, and thermal properties, are extensively reviewed. Finally, aerogel's utilizations in numerous disciplines, for instance, energy storage, thermal insulation, catalysis, environmental remedy, and biomedical applications, are summarized. This review paper provides a comprehensive understanding of aerogels and their prospective uses in diverse fields, highlighting their unique properties for future research and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754877 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e23102 | DOI Listing |
J Orthop Res
September 2025
Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.
View Article and Find Full Text PDFJ Imaging Inform Med
September 2025
Department of Biomedical Engineering, Gachon University, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea.
To develop and validate a deep-learning-based algorithm for automatic identification of anatomical landmarks and calculating femoral and tibial version angles (FTT angles) on lower-extremity CT scans. In this IRB-approved, retrospective study, lower-extremity CT scans from 270 adult patients (median age, 69 years; female to male ratio, 235:35) were analyzed. CT data were preprocessed using contrast-limited adaptive histogram equalization and RGB superposition to enhance tissue boundary distinction.
View Article and Find Full Text PDFEur Spine J
September 2025
Department of Biomedical Engineering, Beijing University of Technology, Beijing, China.
Purpose: To write a letter to editors concerning "Efficacy of two opportunistic methods for screening osteoporosis in lumbar spine surgery patients" by T.-T. Xu, et al.
View Article and Find Full Text PDFNat Hum Behav
September 2025
Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.
Understanding how sentences are represented in the human brain, as well as in large language models (LLMs), poses a substantial challenge for cognitive science. Here we develop a one-shot learning task to investigate whether humans and LLMs encode tree-structured constituents within sentences. Participants (total N = 372, native Chinese or English speakers, and bilingual in Chinese and English) and LLMs (for example, ChatGPT) were asked to infer which words should be deleted from a sentence.
View Article and Find Full Text PDFNature
September 2025
Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.
View Article and Find Full Text PDF