Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena.
View Article and Find Full Text PDFBiomedical implants have revolutionized modern medicine, providing diverse treatment options for various medical conditions. Ensuring the long-term success of certain materials used in various applications requires careful consideration of their ability to interact with biological systems and withstand harsh biological conditions. Optimizing surface properties is crucial for successfully integrating biomedical implants into the human body, ensuring biocompatibility, durability, and functionality.
View Article and Find Full Text PDFMXenes are a group of 2D transition metal carbonitrides, nitrides and carbides that have become widely recognized as useful materials since they were first discovered in 2011. MXenes, with their exceptional layered structures and splendid external chemistries, have excellent electrical, optical, and thermal properties, making them suitable for catalysis, biomedical uses, environmental remediation, energy storage, and EMI shielding. Over forty MXene compounds with surface terminations like hydroxyl, oxygen, or fluorine are hydrophilic and easily integrated into various applications.
View Article and Find Full Text PDFPhysical vapor deposition (PVD) coating is a versatile and well-liked method for depositing thin films of materials onto surfaces in a range of industries. Due to their numerous functional and aesthetic benefits, PVD coatings are beneficial in several applications, from electronics and optics to automotive and medical equipment. PVD coating technology dramatically improves the effectiveness and quality of medical implants.
View Article and Find Full Text PDFRapid advancements in the field of 3D printing in the last several decades have made it possible to produce complex and unique parts with remarkable precision and accuracy. Investigating the use of 3D printing to create various high-performance materials is a relatively new field that is expanding exponentially worldwide. Automobile, biomedical, construction, aerospace, electronics, and metal and alloy industries are among the most prolific users of 3D printing technology.
View Article and Find Full Text PDFIncorporating nanoparticles can significantly improve the performance and functionality of fiber-reinforced polymer (FRP) composites. Different techniques exist for processing, testing, and implementing nanocomposites in various industries. Depending on these factors, these materials can be tailored to suit the specific applications of the automotive and aerospace industries, defence industries, biomedical and energy sectors etc.
View Article and Find Full Text PDFAerogels are unique and extremely porous substances with fascinating characteristics such as ultra-low density, extraordinary surface area, and excellent thermal insulation capabilities. Due to their exceptional features, aerogels have attracted significant interest from various fields, including energy, environment, aerospace, and biomedical engineering. This review paper presents an overview of the trailblazing research on aerogels, aiming at their preparation, characterization, and applications.
View Article and Find Full Text PDFPolymers (Basel)
October 2023
The exploration of nanocellulose has been aided by rapid nanotechnology and material science breakthroughs, resulting in their emergence as desired biomaterials. Nanocellulose has been thoroughly studied in various disciplines, including renewable energy, electronics, environment, food production, biomedicine, healthcare, and so on. Cellulose nanocrystal (CNC) is a part of the organic crystallization of macromolecular compounds found in bacteria's capsular polysaccharides and plant fibers.
View Article and Find Full Text PDFDue to global supply chain disruptions and high demand for personal protective equipment (PPE), the rapidly expanding COVID-19 crisis left millions of front-line fighters unprotected. The disposal of PPE in the environment caused significant environmental pollution. Hence, indigenous initiatives have been taken to fabricate antiviral and biodegradable face shields with the help of neoteric and cleaner technologies.
View Article and Find Full Text PDFMany implant materials have been used in various dental applications depending on their efficacy and availability. A dental implant must possess the required characteristics, such as biocompatibility, corrosion & wear resistance, adequate mechanical properties, osseointegration, etc., to ensure its safe and optimum use.
View Article and Find Full Text PDF