Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biomedical implants have revolutionized modern medicine, providing diverse treatment options for various medical conditions. Ensuring the long-term success of certain materials used in various applications requires careful consideration of their ability to interact with biological systems and withstand harsh biological conditions. Optimizing surface properties is crucial for successfully integrating biomedical implants into the human body, ensuring biocompatibility, durability, and functionality. Chemical Vapor Deposition (CVD) has become a crucial technology in surface engineering, offering a precise technique for applying thin films with customized properties. This article provides a comprehensive study of surface engineering for biomedical implants, specifically emphasizing the CVD coating technique. By carefully manipulating chemical reactions in the vapor phase, CVD allows for the creation of coatings that enhance wear resistance, minimize friction, and improve biocompatibility. This review also explores the underlying principles of CVD, the various process parameters involved, and the subsequent enhancements in implant performance. Using case studies and experimental findings, it showcases the ability of CVD to greatly enhance the durability and effectiveness of biomedical implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425162PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37976DOI Listing

Publication Analysis

Top Keywords

biomedical implants
20
surface engineering
12
chemical vapor
8
vapor deposition
8
biocompatibility durability
8
biomedical
5
implants
5
cvd
5
precise surface
4
engineering leveraging
4

Similar Publications

Background: Lower extremity arterial disease is a prevalent vascular condition leading to ischemic symptoms and increased risk of cardiovascular events. Drug-eluting stents have improved outcomes by reducing restenosis, with sirolimus emerging as a promising alternative to paclitaxel due to its safer profile. This study evaluates the efficacy and safety of novel polymer-free Amphilimus formulation (Sirolimus + fatty acid) eluting self-expanding stent in the treatment of femoropopliteal disease in a real-world population.

View Article and Find Full Text PDF

Purpose: To determine the accuracy of a new machine learning-based open-source IOL formula (PEARLS-DGS) in 100 patients who underwent uncomplicated cataract surgery and had a history of laser refractive surgery for myopic defects.

Methods: The setting for this retrospective study was HUMANITAS Research Hospital, Milan, Italy. Data from 100 patients with a history of photorefractive keratectomy or laser in situ keratomileusis were retrospectively analyzed to assess the accuracy of the formula.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Kinematic alignment is increasingly adopted in total knee arthroplasty (TKA) as a patient-specific strategy to restore native joint anatomy. However, its reliance on static radiographic measurements may not adequately reflect real-world functional biomechanics. This editorial underscores the importance of complementing static assessment with kinetic principles.

View Article and Find Full Text PDF

Magnetic Implantable Devices and Materials for the Brain.

Small Methods

September 2025

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.

Understanding the brain's complexity and developing treatments for its disorders necessitates advanced neural technologies. Magnetic fields can deeply penetrate biological tissues-including bone and air-without significant attenuation, offering a compelling approach for wireless, bidirectional neural interfacing. This review explores the rapidly advancing field of magnetic implantable devices and materials designed for modulation and sensing of the brain.

View Article and Find Full Text PDF