98%
921
2 minutes
20
Antibiotic resistance still represents a global health concern which diminishes the pool of effective antibiotics. With the vancomycin derivative FU002, we recently reported a highly potent substance active against Gram-positive bacteria with the potential to overcome vancomycin resistance. However, the translation of its excellent antimicrobial activity into clinical efficiency could be hampered by its rapid elimination from the blood stream. To improve its pharmacokinetics, we encapsulated FU002 in PEGylated liposomes. For PEG-liposomal FU002, no relevant cytotoxicity on liver, kidney and red blood cells was observed. Studies in Wistar rats revealed a significantly prolonged blood circulation of the liposomal antibiotic. In microdilution assays it could be demonstrated that encapsulation does not diminish the antimicrobial activity against staphylococci and enterococci. Highlighting its great potency, liposomal FU002 exhibited a superior therapeutic efficacy when compared to the free form in a Galleria mellonella larvae infection model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2023.102731 | DOI Listing |
Turk J Pharm Sci
September 2025
İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Türkiye.
Objectives: This study focused on synthesizing and characterizing novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety and evaluating their antimicrobial activity against several bacterial strains. The research aimed to identify key structural features that enhance antimicrobial efficacy through structure-activity relationship analysis and identify the minimum inhibitory concentration (MIC) of the most potent compounds to assess their potential for further development as antimicrobial agents.
Materials And Methods: Nine novel thiosemicarbazide derivatives containing a 1,2,4-triazole moiety were synthesized by reacting 1,2,4-triazole derivatives with thiosemicarbazide precursors, and the products were characterized using infrared spectroscopy, proton nuclear magnetic resonance (H-NMR), carbon-13 nuclear magnetic resonance (C-NMR) spectroscopy, and elemental analysis.
Cell Metab
August 2025
Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA. Electronic address:
Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.
View Article and Find Full Text PDFBioorg Med Chem
September 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt. Electronic address:
With the continued upsurge of antibiotic resistance and reduced susceptibility to almost all frontline antibiotics, there is a pressing need for the development of new, effective, and safe alternatives. In this study, a scaffold-hopping strategy was utilized to develop a novel class of penicillin-binding protein 2a (PBP2a) inhibitors, centered around a 4H-chromen-4-one core structure. These newly designed compounds demonstrated strong antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant gram-positive pathogens.
View Article and Find Full Text PDFEur J Med Chem
September 2025
Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province,
Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat owing to its multi-drug resistance, creating an urgent need for novel antibiotics. This study focused on developing anti-MRSA agents by designing and synthesizing 30 xanthotoxin-pyridine quaternary ammonium derivatives, followed by evaluating their antibacterial activity and dissecting their mechanism of action against MRSA. Among all derivatives, III13 demonstrated as the most promising candidate: it exhibited potent anti-MRSA activity (MIC = 1 μg/mL), low cytotoxicity, minimal hemolysis, rapid bactericidal effects, and the ability to disrupt biofilms.
View Article and Find Full Text PDFBioorg Chem
August 2025
Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India. Electronic address:
Antimicrobial resistance is recognized as a threat to healthcare systems worldwide and consequently, discovery and development of new antimicrobials is a top priority. Natural products and their derivatives have historically been an excellent source of antimicrobials. In this context, anti-bacterial activity of synthesized natural product derivative, Rheinal, was assessed against a panel of Gram-positive and Gram-negative bacterial pathogens where it exhibited potent bactericidal activity against S.
View Article and Find Full Text PDF