Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications.

J Agric Food Chem

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c07217DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
molecular properties
8
antimicrobial resistance
8
milk protein-derived
8
advances antimicrobial
4
milk
4
peptides milk
4
milk molecular
4
properties mechanisms
4
mechanisms applications
4

Similar Publications

Crayfish IMD responds rapidly to WSSV infection and the activated IMD-Relish-AMPs pathway inhibits viral replication.

Fish Shellfish Immunol

September 2025

Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, China. Electronic address:

One of the key innate immune pathways in invertebrates is the immune deficiency (IMD) signaling pathway, which effectively combats Gram-negative bacterial infections. In insects, the IMD pathway is involved in the defense against certain viral infections. However, the functional role of the IMD pathway in antiviral immunity remains incompletely characterized in crustaceans.

View Article and Find Full Text PDF

Nisin-like biosynthetic gene clusters are widely distributed across microbiomes.

mBio

September 2025

APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College, Cork, Ireland.

Bacteriocins are antimicrobial peptides/proteins that can have narrow or broad inhibitory spectra and remarkable potency against clinically relevant pathogens. One such bacteriocin that is extensively used in the food industry and with potential for biotherapeutic application is the post-translationally modified peptide, nisin. Recent studies have shown the impact of nisin on the gastrointestinal microbiome, but relatively little is known of how abundant nisin production is in nature, the breadth of existing variants, and their antimicrobial potency.

View Article and Find Full Text PDF

APD6: the antimicrobial peptide database is expanded to promote research and development by deploying an unprecedented information pipeline.

Nucleic Acids Res

September 2025

Department of Pathology, Microbiology and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States.

The global antibiotic resistance issue constitutes a driving force for developing host defense antimicrobial peptides (AMPs) into a new generation of antibiotics. To facilitate this development, we report the antimicrobial peptide database version 6 (APD6) with (i) the consolidated database platform, (ii) the most comprehensive AMP information pipeline (AMPIP), and (iii) the expanded wheel of function. As of 18 March 2025, the APD6 platform housed records for 5188 peptides, including 3306 natural, 1380 synthetic, and 239 predicted AMPs with systematic classification schemes for each group.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF

Insects, such as , rely on innate immune defences to combat microbial threats. Antimicrobial peptides (AMPs) play an important role in limiting pathogen entry and colonization. Despite intensive research into the regulation and biochemical properties of antimicrobial peptides, their exact significance has remained uncertain due to the challenges of mutating small genes.

View Article and Find Full Text PDF