Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During autumn, decreasing photoperiod and temperature temporarily perturb the balance between carbon uptake and carbon demand in overwintering plants, requiring coordinated adjustments in photosynthesis and carbon allocation to re-establish homeostasis. Here we examined adjustments of photosynthesis and allocation of nonstructural carbohydrates (NSCs) following a sudden shift to short photoperiod, low temperature, and/or elevated CO in Pinus strobus seedlings. Seedlings were initially acclimated to 14 h photoperiod (22/15°C day/night) and ambient CO (400 ppm) or elevated CO (800 ppm). Seedlings were then shifted to 8 h photoperiod for one of three treatments: no temperature change at ambient CO (22/15°C, 400 ppm), low temperature at ambient CO (12/5°C, 400 ppm), or no temperature change at elevated CO (22/15°C, 800 ppm). Short photoperiod caused all seedlings to exhibit partial nighttime depletion of starch. Short photoperiod alone did not affect photosynthesis. Short photoperiod combined with low temperature caused hexose accumulation and repression of photosynthesis within 24 h, followed by a transient increase in nonphotochemical quenching (NPQ). Under long photoperiod, plants grown under elevated CO exhibited significantly higher NSCs and photosynthesis compared to ambient CO plants, but carbon uptake exceeded sink capacity, leading to elevated NPQ; carbon sink capacity was restored and NPQ relaxed within 24 h after shift to short photoperiod. Our findings indicate that P. strobus rapidly adjusts NSC allocation, not photosynthesis, to accommodate short photoperiod. However, the combination of short photoperiod and low temperature, or long photoperiod and elevated CO disrupts the balance between photosynthesis and carbon sink capacity, resulting in increased NPQ to alleviate excess energy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14095DOI Listing

Publication Analysis

Top Keywords

short photoperiod
32
low temperature
20
photoperiod
13
photoperiod low
12
sink capacity
12
photosynthesis
8
allocation photosynthesis
8
short
8
photosynthesis short
8
temperature
8

Similar Publications

Fine tuning wheat development for the winter to spring transition.

Plant Commun

September 2025

School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:

The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.

View Article and Find Full Text PDF

Trimethylation of histone H3 at lys36 (H3K36me3) promotes gene transcription and governs plant development and plant responses to environmental cues. Yet, how H3K36me3 is translated into specific downstream events remains largely uninvestigated. Here, we report that the Arabidopsis PWWP-domain protein HUA2 binds methyl-H3K36 in a PWWP motif-dependent manner.

View Article and Find Full Text PDF

Introduction: This study examined the effects of pot size, soil type, fertilizer x dose interactions, and foliar fertilizer application on wheat growth under speed breeding conditions.

Methods: The study was conducted in 2020 in a semi-controlled greenhouse at Dicle University, Diyarbakır, Türkiye, with a 22-hour photoperiod, 22/17°C day/ night temperature, 70% humidity, and 316.15 µmol/m/s light intensity using a mix of white, red, yellow, and purple LED lamps.

View Article and Find Full Text PDF

In photoperiod sensitive plants, the timing of phenological events depends primarily on day length rather than temperature, precipitation or other environmental variables. This may make these photoperiod sensitive species less able to respond to climate change as their phenologies are more tightly controlled by day length conditions, which remain constant into the future, than by changing climatic conditions. We measured germination under three light treatments (short-day, long-day and equal light and dark) to quantify species' germination photoperiod sensitivity.

View Article and Find Full Text PDF

The plant life cycle progresses through distinct phases defined by the morphology of the organs formed on the shoot. In Arabidopsis, age-dependent reduction in the related microRNAs miR156 and miR157 controls transitions from juvenile to adult vegetative phase and from adult to reproductive phase. However, whether these miRNA isoforms have specific contributions remains unclear.

View Article and Find Full Text PDF