98%
921
2 minutes
20
In this study, a progressive damage model was developed for the mechanical response and damage evolution of carbon fiber stitched composite laminates under low-velocity impact (LVI). The three-dimensional Hashin and Hou failure criteria were used to identify fiber and matrix damage. The cohesive zone model was adopted to simulate the delamination damage, combined with the linear degradation discounting of the equivalent displacement method to characterize the stiffness degradation of the material, and the corresponding user material subroutine VUMAT was coded. The finite element analysis of the LVI of stitched composite laminates under different energies was finished in Abaqus/Explicit. Furthermore, the simulation predictions matched well with the results of the experimental tests. Based on this, composite laminates' mechanical response and damage forms with different thicknesses and stitch densities were analyzed. The findings show that the main damages of composite laminates were matrix tensile damage and delamination. The stitching process could improve the impact tolerance of composite laminates, inhibiting delamination and reducing the area of the delamination damage. The higher the density of the stitching, the more noticeable its inhibition would be. The thickness of the laminate also had a more significant effect on the damage to the laminate. Thin plates were more prone to matrix tensile damage due to their lower flexural rigidity, whereas thick plates were more susceptible to delamination because of their higher flexural rigidity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747043 | PMC |
http://dx.doi.org/10.3390/polym15244628 | DOI Listing |
Proc Inst Mech Eng H
September 2025
Faculty of Medicine, Sirindhorn School of Prosthetics and Orthotics, Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand.
This study provides valuable guidance for simplifying fabrication procedures and enhancing the structural integrity and safety of carbon fiber (CF) laminate transfemoral (TF) prosthetic sockets. While the high specific strength of CF laminate sockets offers advantages over conventional plastics, essential production data-their orientation-dependent strength and optimal cure conditions-are lacking, often requiring complex, costly cure cycles. This study investigated (i) the influence of fiber orientation on TF prosthetic CF socket strength via finite element analysis (FEA) during standing, and (ii) optimal single-step Vacuum-Bag-Only (VBO) cure conditions for prepreg in a low-cost conventional oven.
View Article and Find Full Text PDFSci Rep
August 2025
Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, D-38106, Braunschweig, Germany.
Piezoelectric (0-3) composites typically consist of a polymer matrix that contains piezoceramic particles. They can be used as sensors for structural health monitoring due to their lower acoustic impedance and ability to detect high-frequency waves. These composites have two thin electrodes on their surfaces, and cable connections that require electrical insulation.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
School of Aerospace Engineering, Xiamen University, Xiamen 361105, China.
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many researchers in the aerospace manufacturing industry, there are still some challenges that need to be considered. Conventional approaches like lay-up techniques and autoclave molding can achieve the relatively simple FML parts with large radii and profiles required for aircraft fuselages and flat skins.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China.
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced damage in carbon fiber-reinforced plastic (CFRP) composites. Subsequently, parametric investigations evaluate the influence of varying input loads and stacking sequences on interlaminar pyrolysis and delamination damage, with damage assessment quantitatively conducted based on simulated post-strike uniaxial ultimate compressive loads.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico.
This study investigates the elastoplastic behavior of phenol formaldehyde/polyvinyl butyral matrix (70% PF/30% PVB) reinforced with Kevlar fibers through comprehensive in-plane tensile testing. Cyclic loading-unloading tests were conducted at a 100%/min strain rate using a universal testing system at room temperature on 04, 904, and ±45s laminates. The experimental results revealed significant nonlinear hardening behavior beyond yield stress, accompanied by yarn stiffening effects during loading cycles.
View Article and Find Full Text PDF