Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study investigates the elastoplastic behavior of phenol formaldehyde/polyvinyl butyral matrix (70% PF/30% PVB) reinforced with Kevlar fibers through comprehensive in-plane tensile testing. Cyclic loading-unloading tests were conducted at a 100%/min strain rate using a universal testing system at room temperature on 04, 904, and ±45s laminates. The experimental results revealed significant nonlinear hardening behavior beyond yield stress, accompanied by yarn stiffening effects during loading cycles. A novel elastoplastic constitutive model was developed, incorporating Hill's yield criterion adapted for orthotropic materials and an isotropic hardening function that accounts for equivalent plastic strains and progressive yarn stiffening. Laminates with other stacking sequences were also tested and the accuracy of the predictions of the nonlinear behavior was assessed. In these laminates, delaminations took place and the model provided an overestimation of the stress-strain response. Since the model could not predict delamination onset and propagation, an adaptation of the model considering fully delaminated interfaces brought a lower bound of this response. Despite the limitations of the model, it can be used to provide reasonable limits to the stress-strain response of laminates accounting for plastic strains within plies. This study provides essential mechanical properties and constitutive relationships for designing Kevlar composite structures with tailored stiffness characteristics for impact-resistant applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389664 | PMC |
http://dx.doi.org/10.3390/polym17162235 | DOI Listing |