Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper investigates how the electromechanical response of MEMS/NEMS devices changes when the geometrical characteristics of their embedded flexural hinges are modified. The research is dedicated particularly to MEMS/NEMS devices which are actuated by means of rotary comb-drives. The electromechanical behavior of a chosen rotary device is assessed by studying the rotation of the end effector, the motion of the comb-drive mobile fingers, the actuator's maximum operating voltage, and the stress sustained by the flexure when the flexure's shape, length, and width change. The results are compared with the behavior of a standard revolute joint. Outcomes demonstrate that a linear flexible beam cannot perfectly replace the revolute joint as it induces a translation that strongly facilitates the pull-in phenomenon and significantly increases the risk of ruptures of the comb-drives. On the other hand, results show how curved beams provide a motion that better resembles the revolute motion, preserving the structural integrity of the device and avoiding the pull-in phenomenon. Finally, results also show that the end effector motion approaches most precisely the revolute motion when a fine tuning of the beam's length and width is performed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745469PMC
http://dx.doi.org/10.3390/mi14122229DOI Listing

Publication Analysis

Top Keywords

electromechanical response
8
mems/nems devices
8
effector motion
8
length width
8
revolute joint
8
pull-in phenomenon
8
revolute motion
8
motion
5
dependency electromechanical
4
response rotary
4

Similar Publications

Nearly 30% of patients with cardiac resynchronization therapy (CRT) are non- responders. Speckle tracking echocardiography (STE) parameters are able to evaluate electromechanical dyssynchrony that could improve outcomes. We aim to examine the association between various STE parameters with CRT response and clinical outcomes in heart failure patients.

View Article and Find Full Text PDF

Background: Women are under-represented in cardiovascular research, leading to poorer outcomes. Investigating sex-differences in electromechanical function is essential for improving therapy evaluation. This study presents sex-specific human cellular and biventricular electromechanical models for mechanistic investigation of sex-differences in therapeutic response.

View Article and Find Full Text PDF

Bismuth-layered structure ferroelectrics (BLSFs), exemplified by CaBiTaO (CBTa), exhibit exceptional thermal stability at high temperatures with a high Curie temperature. This attribute renders them highly promising candidates for piezoelectric sensors, transducers, non-volatile ferroelectric memory, working in extreme environments. However, CBTa ceramic suffers from the following intrinsic limitations: spontaneous polarization confined within the -plane of the unit cell and a large coercive field, leading to severely suppressed piezoelectric activity ( ≈ 5.

View Article and Find Full Text PDF

Fabrication and Dose-Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode.

Micromachines (Basel)

August 2025

Wuhan Neuracom Technology Development Co., Ltd., Wuhan 430074, China.

A 16-channel dual-sided flexible electrode based on a polyimide substrate was designed and fabricated using micro-electromechanical system (MEMS) technology. The electrode exhibited an average impedance of 5.9 kΩ at 1 kHz and a charge storage capacity (CSC) of 10.

View Article and Find Full Text PDF

Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile "one-pot" strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I, ~2.

View Article and Find Full Text PDF