98%
921
2 minutes
20
Accurate 3D object detection in large-scale outdoor scenes, characterized by considerable variations in object scales, necessitates features rich in both long-range and fine-grained information. While recent detectors have utilized window-based transformers to model long-range dependencies, they tend to overlook fine-grained details. To bridge this gap, we propose MsSVT++, an innovative Mixed-scale Sparse Voxel Transformer that simultaneously captures both types of information through a divide-and-conquer approach. This approach involves explicitly dividing attention heads into multiple groups, each responsible for attending to information within a specific range. The outputs of these groups are subsequently merged to obtain final mixed-scale features. To mitigate the computational complexity associated with applying a window-based transformer in 3D voxel space, we introduce a novel Chessboard Sampling strategy and implement voxel sampling and gathering operations sparsely using a hash map. Moreover, an important challenge stems from the observation that non-empty voxels are primarily located on the surface of objects, which impedes the accurate estimation of bounding boxes. To overcome this challenge, we introduce a Center Voting module that integrates newly voted voxels enriched with mixed-scale contextual information towards the centers of the objects, thereby improving precise object localization. Extensive experiments demonstrate that our single-stage detector, built upon the foundation of MsSVT++, consistently delivers exceptional performance across diverse datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2023.3345880 | DOI Listing |
IEEE Trans Image Process
January 2025
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design.
View Article and Find Full Text PDFEntropy (Basel)
July 2024
School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
When a camera lens is directly faced with a strong light source, image flare commonly occurs, significantly reducing the clarity and texture of the photo and interfering with image processing tasks that rely on visual sensors, such as image segmentation and feature extraction. A novel flare removal network, the Sparse-UFormer neural network, has been developed. The network integrates two core components onto the UFormer architecture: the mixed-scale feed-forward network (MSFN) and top-k sparse attention (TKSA), creating the sparse-transformer module.
View Article and Find Full Text PDFJ Appl Crystallogr
April 2024
Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing. DLSIA features easy-to-use architectures, such as autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks (MSDNets). Additionally, this article introduces sparse mixed-scale networks (SMSNets), generated using random graphs, sparse connections and dilated convolutions connecting different length scales.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
May 2024
Accurate 3D object detection in large-scale outdoor scenes, characterized by considerable variations in object scales, necessitates features rich in both long-range and fine-grained information. While recent detectors have utilized window-based transformers to model long-range dependencies, they tend to overlook fine-grained details. To bridge this gap, we propose MsSVT++, an innovative Mixed-scale Sparse Voxel Transformer that simultaneously captures both types of information through a divide-and-conquer approach.
View Article and Find Full Text PDFNatl Sci Rev
March 2021
National Center for Mathematics and Interdisciplinary Sciences, Center for Excellence in Mathematical Science, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
Convolutional neural network (CNN) and its variants have led to many state-of-the-art results in various fields. However, a clear theoretical understanding of such networks is still lacking. Recently, a multilayer convolutional sparse coding (ML-CSC) model has been proposed and proved to equal such simply stacked networks (plain networks).
View Article and Find Full Text PDF