Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development and design of pharmaceutical cocrystals for various biological applications has garnered significant interest. In this study, we have established methodologies for the growth of the methylparaben-quinidine cocrystal (MP-QU), which exhibits a well-defined order that favors structure-property correlation. To confirm the cocrystal formation, we subjected the cocrystals to various physicochemical analyses such as powder X-ray diffraction (PXRD), single-crystal X-ray diffraction (SCXRD), Raman, and IR spectroscopy. The results of the XRD pattern comparisons indicated no polymorphisms, and density functional theory (DFT) studies in both gaseous and liquid phases revealed enhanced stability. Our docking studies demonstrated the cocrystal's high-affinity binding towards cancer-specific epidermal growth factor receptor (EGFR), Janus kinase (JAK), and other receptors. Furthermore, testing against three-dimensional (3D) spheroids of lung cancer (A549) and normal fibroblast cells (L929) demonstrated the cocrystal's higher anticancer potential, supported by cell viability measurements and live/dead assays. Interestingly, the cocrystal showed selectivity between cancerous and normal 3D spheroids. We found that the MP-QU cocrystal inhibited migration and invadopodia formation of cancer spheroids in a favorable 3D microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720001PMC
http://dx.doi.org/10.1021/acsomega.3c05617DOI Listing

Publication Analysis

Top Keywords

lung cancer
8
x-ray diffraction
8
demonstrated cocrystal's
8
selective targeting
4
targeting lung
4
cancer cells
4
cells methylparaben-tethered-quinidine
4
methylparaben-tethered-quinidine cocrystals
4
cocrystals spheroid
4
spheroid models
4

Similar Publications

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Chalasoergodimers A-E, heterodimers with multiple polymerization modes from a marine-derived Chaetomium sp. fungus.

Nat Prod Bioprospect

September 2025

College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, People's Republic of China.

Five new heterodimers, chalasoergodimers A-E (1-5), and three known heterodimers (6-8), along with four chaetoglobosin monomers (9-12), were isolated from a marine-derived Chaetomium sp. fungus. The structures of new compounds 1-5 were elucidated by HRESIMS, NMR, chemical calculated C NMR and ECD methods.

View Article and Find Full Text PDF