98%
921
2 minutes
20
Iron oxide nanoparticles (FeO NPs) have been reported to be a promising agent for cancer therapy due to their outstanding ability in catalyzing the Fenton reaction and causing peroxidation. Generally, particles with size of hundreds of nanometers exhibit enhanced accumulation in tumor due to the enhanced permeation and retention effect. However, the large size hinders penetration within the dense collagen matrix. Here, we propose a multistage system to realize pH-responsive size switch for efficient drug delivery. In this system, ultrasmall FeO (∼4 nm) NPs are simultaneously modified with hydrophilic mPEG and hydrophobic ,-dibutylethylenediamine (DBE) to form pH-responsive self-assembled iron oxide aggregations (SIOA). In the acidic tumor microenvironment, the protonation of DBE makes it transit from the hydrophobic to hydrophilic state, causing the disassembly of the SIOA and the release of loaded doxorubicin. The multistage FeO NPs demonstrate enhanced accumulation and efficient diffusion within the tumor, holding a promise for drug delivery and cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00889 | DOI Listing |
Int J Biol Macromol
September 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:
Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele
Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.
Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.
View Article and Find Full Text PDFLuminescence
September 2025
Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India.
The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.
View Article and Find Full Text PDFNat Commun
September 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.
View Article and Find Full Text PDF