Local Electron Environment Regulation of Spinel CoMnO Induced Effective Reactant Adsorption and Transformation of Lattice Oxygen for Toluene Oxidation.

Environ Sci Technol

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In contrast to numerous studies on oxygen species, the interaction of volatile organic compounds (VOCs) with oxides is also critical to the catalytic reaction but has hardly been considered. Herein, we develop a highly efficient Pt atom doped spinel CoMnO (Pt-CoMn) for oxidation of toluene at low temperature, and the toluene conversion rate increased by 18.3 times (129.7 versus 7.1 × 10 mol/(m·s)) at 160 °C compared to that of CoMnO. Detailed characterizations and density functional theory calculations reveal that the local electron environment of the Co sites is changed after Pt doping, and the formed electron-deficient Co sites in turn strengthen the interaction with toluene. Adsorbed toluene will react with lattice oxygen in Pt-CoMn and CoMn catalysts and convert into benzoate intermediates, and the consumption rate of benzoate is closely related to the activation of gaseous oxygen. Significantly, the abundant bulk defects of Pt-CoMn help to open the reaction channel in the CoMn spinel, which acts as an oxygen pump to promote the transformation of bulk lattice oxygen into surface lattice oxygen at lower temperatures, thus accelerating the conversion rate of benzoate intermediates into CO and enhancing low-temperature combustion of toluene. Pt-CoMn developed here emphasizes the regulation of VOCs adsorption strength and lattice oxygen transformation processes on CoMnO by adjusting the local electron environment, which will provide new guidance for the design of efficient oxide catalysts for catalytic oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c06782DOI Listing

Publication Analysis

Top Keywords

lattice oxygen
20
local electron
12
electron environment
12
spinel comno
8
oxygen
8
conversion rate
8
benzoate intermediates
8
rate benzoate
8
toluene
6
lattice
5

Similar Publications

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Oxophilic Sites Mediated Dynamic Oxygen Replenishment to Stabilize Lattice Oxygen Catalysis in Acidic Water Oxidation.

J Am Chem Soc

September 2025

Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.

Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.

View Article and Find Full Text PDF

The difference in hydroxyl adsorption between Ni and Fe sites in NiFeOOH limits the efficient dual-site synergistic mechanism (DSSM) during oxygen evolution reaction (OER). Here, a novel needle-array electrodeposition is reported for the scalable and efficient fabrication of Co and Y co-doped NiFeOOH catalyst. It achieves an ultralow overpotential of 270 mV at 1 A cm with a small Tafel slope of 30.

View Article and Find Full Text PDF

RuO, the benchmark catalyst for the oxygen evolution reaction (OER), has traditionally been considered Pauli paramagnetic; however, recent findings have demonstrated its antiferromagnetic (AFM) properties, hinting at the opportunity to enhance RuO's OER performance by manipulating its magnetic traits. In this study, we successfully induced weak ferromagnetism in commercial RuO, transitioning it from an AFM state using an electrochemical sodiation method. This process resulted in high activity, achieving an overpotential of 145 mV to reach 10 mA cm and extending the service hours by more than 13 times compared to pristine RuO in 0.

View Article and Find Full Text PDF

Phase-Reconstruction of S-Doped (NiCo)WC for Efficient and Stable Oxygen Evolution Reaction Electrocatalysis.

Nano Lett

September 2025

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

Developing highly active and stable nonprecious electrocatalysts toward sluggish alkaline oxygen evolution reaction (OER) is essential for large-scale green hydrogen production via electrochemical water splitting. Here we report phase and surface co-reconstruction of S-doped (NiCo)WC nanoparticles into (NiCo)C with amorphous electroactive NiCoOOH layer for highly efficient alkaline OER by W dissolution and NiCo surface oxidation. The W dissolution results in the formation of Brønsted base WO ions, which electrostatically accumulate around electrode to promote water dissociation into abundant OH* intermediates, in situ constructing a locally strong alkaline microenvironment to facilitate OH* adsorption on NiCoOOH sites and trigger lattice-oxygen oxidation path.

View Article and Find Full Text PDF