Improving the thermal stability and catalytic activity of ulvan lyase by the combination of FoldX and KnowVolution campaign.

Int J Biol Macromol

College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China. Electronic address:

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermal stability is one of the most important properties of ulvan lyases for their application in algae biomass degradation. The Knowledge gaining directed eVolution (KnowVolution) protein engineering strategy could be employed to improve thermostability of ulvan lyase with less screening effort. Herein, the unfolding free energies (ΔΔG) of the loop region were calculated using FoldX and four sites (D103, G104, T113, Q229) were selected for saturation mutagenesis, resulting in the identification of a favorable single-site mutant Q229M. Subsequently, iteration mutation was carried out with the mutant N57P (previously obtained by our group) to further enhance the performance of ulvan lyase. The results showed that the most beneficial variant N57P/Q229M exhibited a 1.67-fold and 2-fold increase in residual activity compared to the wild type after incubation at 40 °C and 50 °C for 1 h, respectively. In addition, the variant produced 1.06 mg/mL of reducing sugar in 2 h, which was almost four times as much as the wild type. Molecular dynamics simulations revealed that N57P/Q229M mutant enhanced the structural rigidity by augmenting intramolecular hydrogen bonds. Meanwhile, the shorter proton transmission distance between the general base of the enzyme and the substrate contributed to the glycosidic bond breakage. Our research showed that in silico saturation mutagenesis using position scan module in FoldX allowed for faster screening of mutants with improved thermal stability, and combining it with KnowVolution enabled a balanced effect of thermal stability and enzyme activity in protein engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128577DOI Listing

Publication Analysis

Top Keywords

thermal stability
16
ulvan lyase
12
protein engineering
8
saturation mutagenesis
8
wild type
8
improving thermal
4
stability
4
stability catalytic
4
catalytic activity
4
ulvan
4

Similar Publications

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF

To address the growing demand for temperature control precision and uniformity in wafer processing, a specialized electrostatic chuck temperature control system based on thermal control coatings is proposed, aiming to enhance thermal management robustness and homogeneity. This study employs a zoned control methodology using metal-oxide conductive coatings on silicon carbide wafer heating plates. A quadrant-based thermal control coating model was established, and finite element analysis was conducted to compare temperature distribution characteristics across three geometric configurations: sectorial, spiral, and zoned designs.

View Article and Find Full Text PDF

Thermodynamic and Kinetic Effects in Spin Blocking of CO Coordination Reactions.

Inorg Chem

September 2025

Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.

The iron(I) dinitrogen complex PhB(AdIm)FeN, which is supported by a very bulky 1-adamantyl-substituted tris(carbene)borate ligand, reacts with equimolar CO at low temperature to afford the high spin ( = 3/2) complex PhB(AdIm)Fe(CO). This monocarbonyl complex reacts with additional CO to afford the low spin ( = 1/2) dicarbonyl complex PhB(AdIm)Fe(CO). By contrast, the high spin iron(I) tris(pyrazolyl)borate complex TpFe(CO) does not react with additional CO.

View Article and Find Full Text PDF

We report the design and in-orbit demonstration of a compact optical system for a 87Sr optical lattice clock aboard the Chinese Space Station. This system adopts a compact and robust vertically stacked architecture with a total volume of 0.11 m3 and a mass of 53.

View Article and Find Full Text PDF