Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tuberculosis remains one of the leading causes of death worldwide, especially in low- and middle-income countries. Tuberculosis treatment and control efforts are hindered by the difficulty in making the diagnosis, as currently available diagnostic tests are too slow, too expensive, or not sufficiently sensitive. Recombinase polymerase amplification (RPA) is a novel technique that allows for the amplification of DNA rapidly, at constant temperature, and with minimal expense. We calculated and compared the limit of detection, sensitivity, and specificity of two RPA-based assays for the diagnosis of pulmonary tuberculosis, using two sets of published primers. We also calculated and compared the assays' limits of detection and compared their performance using two different DNA extraction methods prior to amplification (a commercially available DNA extraction kit vs. the chelex method). The RPA-lateral flow assay had a limit of detection of 5 fg/μL of DNA, a sensitivity of 53.2%, and a specificity of 93.3%, while the real time-RPA assay had a limit of detection of 25 fg/μL of DNA, a sensitivity of 85.1%, and a specificity of 93.3%. There was no difference in assay performance when DNA extraction was carried out using the commercial kit vs. the chelex method. The real-time RPA assay has adequate sensitivity and specificity for the diagnosis of pulmonary tuberculosis and could be a viable diagnostic tool in resource-limited settings, but the lateral flow assay did not perform as well, perhaps due to the fact we used stored sputum specimens from a biorepository. More work is needed to optimize the RPA-lateral flow assay, to get a more accurate estimate of its specificity and sensitivity using prospectively collected specimens, and to develop both assays into point-of-care tests that can be easily deployed in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10707601PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295610PLOS

Publication Analysis

Top Keywords

limit detection
12
dna extraction
12
flow assay
12
recombinase polymerase
8
polymerase amplification
8
calculated compared
8
sensitivity specificity
8
diagnosis pulmonary
8
pulmonary tuberculosis
8
performance dna
8

Similar Publications

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Tissue factor (TF) has emerged as a promising target for the diagnosis and treatment of hepatocellular carcinoma (HCC). However, there is limited data available on TF-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. Herein, we aimed to explore the TF-expression feature and compare a novel TF-targeted PET probe with F-FDG through longitudinal imaging in diethylnitrosamine (DEN)-induced rat HCC.

View Article and Find Full Text PDF

Purpose: Breast cancer remains a significant public health challenge globally, as well as in India, where it is the most frequently diagnosed cancer in females. Significant disparities in incidence, mortality, and access to health care across India's sociodemographically diverse population highlight the need for increased awareness, policy reform, and research.

Design: This review consolidates data from national cancer registries, global cancer databases, and institutional findings from a tertiary care center to examine the epidemiology, clinical challenges, and management gaps specific to India.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.

View Article and Find Full Text PDF