Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate target segmentation from computed tomography (CT) scans is crucial for surgical robots to perform clinical surgeries successfully. However, the lack of medical image data and annotations has been the biggest obstacle to learning robust medical image segmentation models. Self-supervised learning can effectively address this problem by providing a strategy to pre-train a model with unlabeled data, and then fine-tune downstream tasks with limited labeled data. Existing self-supervised methods fail to simultaneously utilize the abundant global anatomical structure information and local feature differences in medical imaging. In this work, we propose a new strategy for the pre-training framework, which uses the three-dimensional anatomical structure of medical images and specific task and background cues to segment volumetric medical images with limited annotations. Specifically, we propose (1) learning intrinsic patterns of volumetric medical image structures through multiple sub-tasks, and (2) designing a multi-level background cube contrastive learning strategy to enhance the target feature representation by exploiting the differences between the specific target and background. We conduct extensive evaluations on two publicly available datasets. Under limited annotation settings, the proposed method yields significant improvements compared to other self-supervised learning techniques. The proposed method achieves within 6% of the baseline performance using only five labeled CT volumes for training. Once the paper is online, the code and dataset will be available at https://github.com/PinkGhost0812/SGL.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3339176DOI Listing

Publication Analysis

Top Keywords

medical image
16
pre-training framework
8
image segmentation
8
self-supervised learning
8
anatomical structure
8
medical images
8
volumetric medical
8
proposed method
8
medical
7
learning
5

Similar Publications

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.

View Article and Find Full Text PDF

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF

Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.

View Article and Find Full Text PDF