98%
921
2 minutes
20
With the increasing application of nanoscale zero-valent iron (nZVI) for in situ soil remediation, its effects on soil functionality and ecosystem need to be thoroughly evaluated. Herein, we investigated the effects of nZVI on CO and CH emissions from uncontaminated and pentachlorophenol (PCP)-contaminated soils and the underlying microbial mechanisms by designing a 68-day anaerobic soil culture experiment; thereafter, the effects of above aged nZVI on soil CO and CH emissions in the following 20 days were further studied. In the uncontaminated soil, 1-10 g/kg nZVI treatments reduced soil CO emission by 17.4-82.6% and increased soil CH emission by 10.8%-119.7%, but these effects disappeared after the nZVI was aged. The emissions of soil CO and CH were significantly inhibited by the PCP contamination (100 mg/kg) mainly due to the toxicity to related soil microorganisms. The applications of 1-10 g/kg nZVI significantly reduced CO emissions from the PCP-contaminated soil by 24.0-86.7%, while 10 g/kg nZVI markedly increased soil CH emission by 1875.4% and restored the methanogenic activity to the control level after the nZVI was aged. The 10 g/kg nZVI treatment enriched hydrogenotrophic methanogen (Methanobacterium) and organics-degrading bacteria by releasing H, increasing soil pH, and decreasing soil Eh; the abundance of genes encoding key enzymes (Mcr, Mtr, Hdr, Mta, and Mtb) in all methanogenic pathways significantly increased after the nZVI treatment, indicating that nZVI could have a broad promoting effects on soil methanogenic processes. The findings demonstrate that the addition of nZVI for in situ remediation of organochlorines-contaminated soils will affect soil greenhouse gas emissions and provide basic data for safe nZVI applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.123062 | DOI Listing |
Int J Syst Evol Microbiol
September 2025
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
Two yeast strains, PYCC 10015 and PYCC 10016, were isolated from soil from an Irish forest. Sequence analysis of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rRNA gene repeat, and the D1/D2 domain of the LSU rRNA gene, showed that they belong to the and genera of the order , but they did not exactly match any known species.
View Article and Find Full Text PDFBiol Trace Elem Res
September 2025
Department of Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
The aim of the study was to evaluate the toxic metals (TMs) pollution, bioaccumulation and its potential health risk via consumption of different vegetables irrigated by different water sources released from industrial estates of Khyber Pakhtunkhwa. Water (fresh and waste), soil and vegetables samples were collected in triplicates and acid digested. Digestion of samples were followed by evaporation and filtration and then assessed for TMs via atomic absorption spectrophotometer.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2025
Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh.
The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2025
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2025
Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.
View Article and Find Full Text PDF