Applying Trial-Derived Treatment Effects to Real-World Populations: Generalizing Cost-Effectiveness Estimates When Modeling Complex Hazards.

Value Health

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, NHS Foundation Trust, Oxford, England, UK.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Generalizability of trial-based cost-effectiveness estimates to real-world target populations is important for decision making. In the context of independent aggregate time-to-event baseline and relative effects data, complex hazards can make modeling of data for use in economic evaluation challenging. Our article provides an overview of methods that can be used to apply trial-derived relative treatment effects to external real-world baselines when faced with complex hazards and follows with a motivating example.

Methods: Approaches for applying trial-derived relative effects to real-world baselines are presented in the context of complex hazards. Appropriate methods are applied in a cost-effectiveness analysis using data from a previously published study assessing the real-world cost-effectiveness of a treatment for carcinoma of the head and neck as a motivating example.

Results: Lack of common hazards between the trial and target real-world population, a complex baseline hazard function, and nonproportional relative effects made the use of flexible models necessary to adequately estimate survival. Assuming common distributions between trial and real-world reference survival substantially affected survival and cost-effectiveness estimates. Modeling time-dependent vs proportional relative effects affected estimates to a lesser extent, dependent on assumptions used in cost-effectiveness modeling.

Conclusions: Appropriately capturing reference treatment survival when attempting to generalize trial-derived relative treatment effects to real-world target populations can have important impacts on cost-effectiveness estimates. A balance between model complexity and adequacy for decision making should be considered where multiple data sources with complex hazards are being evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jval.2023.11.007DOI Listing

Publication Analysis

Top Keywords

complex hazards
20
cost-effectiveness estimates
16
relative effects
16
treatment effects
12
effects real-world
12
trial-derived relative
12
applying trial-derived
8
real-world
8
estimates modeling
8
real-world target
8

Similar Publications

Background: Standard Unified BioAccessibility Research Group of Europe (BARGE) Method (UBM) protocols for metal bioaccessibility assessment face challenges due to post-acidification precipitation, causing significant methodological inconsistencies across studies. This research systematically examined precipitate formation by characterizing protein-metal interactions and identifying specific proteins involved, leading to development of an enhanced UBM method for more reliable metal bioaccessibility measurements in consumer products. We focused on precipitation caused by acid injection during sample storage for subsequent instrumental analysis.

View Article and Find Full Text PDF

Ionic liquid-modified COF nanosphere for efficient extraction and sensitive detection of bisphenol pollutants.

Food Chem

September 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, Colleage of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:

The bisphenols (BPs) contaminants with distinctive endocrine-disrupting properties have garnered significant attention. A new analytical methodology was proposed for the sensitive detection of hazardous BPs in efficient and food safety monitoring. The approach utilizes an ionic liquid-modified covalent organic framework (SCOF-V/IL-5F) as a solid-phase extraction adsorbent to enrich harmful BPs.

View Article and Find Full Text PDF

Determination of neonicotinoids in honey and pollen with probabilistic risk assessment for humans and pollinators in South Korea.

Sci Total Environ

September 2025

Center for Climate and Carbon Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Neonicotinoid insecticides have been identified as significant contributors to the decline of pollinators. To evaluate potential exposure of pollinators to neonicotinoids in South Korea, 79 honey samples and 27 pollen samples were obtained from agricultural, mountain, and urban areas. These samples were analyzed for 17 compounds, including neonicotinoids and their metabolites using liquid chromatography coupled with mass spectrometry.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) can modernize occupational health and safety (OHS) practice and provide solutions to the most complex health and safety challenges. Empirical data on firm-level AI utilization in OHS practice remain limited. The objective of this study was to examine AI use for OHS and firm-level descriptive and OHS characteristics associated with AI use.

View Article and Find Full Text PDF

Weakly hydrophobic antibiotics leaching in an alpine soil of the Tibetan Plateau in responding to macropore flow.

J Hazard Mater

September 2025

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int

In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.

View Article and Find Full Text PDF