98%
921
2 minutes
20
Traditional photonuclear reactions primarily excite giant dipole resonances, making the measurement of isovector giant resonances with higher multipolarities a great challenge. In this Letter, the manipulation of collective excitations of different multipole transitions in even-even nuclei via vortex γ photons is investigated. We develop the calculation method for photonuclear cross sections induced by the vortex γ photon beam using the fully self-consistent random-phase approximation plus particle-vibration coupling (RPA+PVC) model based on Skyrme density functional. We find that the electromagnetic transitions with multipolarity J<|m_{γ}| are forbidden for vortex γ photons due to the angular momentum conservation, with m_{γ} being the projection of total angular momentum of γ photon on its propagation direction. For instance, this allows for probing the isovector giant quadrupole resonance without interference from dipole transitions using vortex γ photons with m_{γ}=2. Furthermore, the electromagnetic transition with J=|m_{γ}|+1 vanishes at a specific polar angle. Therefore, the giant resonances with specific multipolarity can be extracted via vortex γ photons. Moreover, the vortex properties of γ photons can be meticulously diagnosed by measuring the nuclear photon-absorption cross section. Our method opens new avenues for photonuclear excitations, generation of coherent γ photon laser and precise detection of vortex particles, and consequently, has significant impact on nuclear physics, nuclear astrophysics and strong laser physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.202502 | DOI Listing |
Nanophotonics
August 2025
Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin, 300072, China.
Vortex beams, characterized by orbital angular momentum (OAM), hold significant potential in optical communications, quantum information processing, and optical manipulation. However, existing metasurface designs are largely confined to single-degree-of-freedom control, such as static OAM generation or fixed focal points, which limiting their ability to integrate polarization multiplexing with dynamic focal tuning. To address this challenge, we propose a tunable multifunctional cascaded metasurface that synergizes polarization-sensitive phase engineering with interlayer rotational coupling, overcoming conventional device limitations.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.
Phased arrays are crucial in various technologies, such as radar and wireless communications, due to their ability to precisely control and steer electromagnetic waves. This precise control improves signal processing and enhances imaging performance. However, extending phased arrays to the terahertz (THz) frequency range has proven challenging, especially for high-frequency operation, broadband performance, two-dimensional (2D) phase control with large antenna arrays, and flexible phase modulation.
View Article and Find Full Text PDFNat Commun
August 2025
State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.
Capturing multi-dimensional optical information is indispensable in modern optics. However, existing photodetectors can at best detect light fields whose wavelengths or polarizations are predefined at several specific values. Integrating broadband high-dimensional continuous photodetection including intensity, polarization, and wavelength within a single device still poses formidable challenges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Programmed assembly of natural materials on a large scale is often limited by inherent factors, including dimensional dispersity, complex hierarchical organization, and slow processing kinetics. In this study, we demonstrate a scalable strategy to preprogram the chiral assembly of cellulose nanocrystals (CNCs) by applying a rotational magnetic field during evaporation-induced self-assembly. To facilitate magnetic responsiveness, CNCs are decorated with magnetic nanoparticles and subjected to a rotational magnetic field.
View Article and Find Full Text PDFMicromachines (Basel)
July 2025
Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
Harbor seals () have excellent perception of water disturbances and can still sense targets as far as 180 m away, even when they lose their vision and hearing. This exceptional capability is attributed to the undulating structure of its vibrissae. These specialized whiskers not only effectively suppress vortex-induced vibrations (VIVs) during locomotion but also amplify the vortex street signals generated by the wake of a target, thereby enhancing the signal-to-noise ratio (SNR).
View Article and Find Full Text PDF