Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solid electrolyte interphase (SEI) is regarded as a key factor to enable high power outputs of Lithium-ion batteries (LIBs). Herein, we demonstrate a modified electrolyte consisting of a novel electrolyte additive, 1,1,2,2-perfluorooctyltrimethoxysilane (FTMS) to construct a highly robust and stable SEI on a graphite anode for LIBs to enhance its rate performance. With 2% FTMS, the anode presents an improved capacity retention from 77.6 to 91.2% at 0.5 C after 100 cycles and an improved capacity from 86 to 229 mAh g at 2 C. Experimental characterizations and theoretical calculations reveal that FTMS is preferentially absorbed and reduced on graphite to construct an interface chemistry with uniform fluoride-containing organic lithium salt and silicon-containing polymer, which exhibits high flexibility and conductivity and endows the SEI with high robustness and stability. This work provides an effective way to address the issue of slow lithium insertion/desertion kinetics of graphite anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c02714DOI Listing

Publication Analysis

Top Keywords

highly robust
8
rate performance
8
graphite anode
8
novel electrolyte
8
electrolyte additive
8
improved capacity
8
constructing highly
4
robust interface
4
interface film
4
film enhancing
4

Similar Publications

Phase separation in innate immunity: Teleost IL6Ra's evolutionary leap against viruses.

Int J Biol Macromol

September 2025

National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea

Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.

View Article and Find Full Text PDF

Flexible and robust cell-type annotation for highly multiplexed tissue images.

Cell Syst

September 2025

Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention.

View Article and Find Full Text PDF

Multi-component collaborative design yields robust hydrogel sensors with superior environmental adaptability for machine learning-assisted gesture recognition.

J Colloid Interface Sci

September 2025

Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.

View Article and Find Full Text PDF

Organophosphorus nerve agents (OPNAs), including G-agents, EGA (ethyltabun, phosphonamidic acid, P-cyano-N,N-diethyl-, ethyl ester) and V-agents, VM (O-ethyl S-(2-diethylaminoethyl) phosphonothiolate), are highly toxic chemical warfare agents (CWAs) with severe risks to human health and environmental security. This study proposes a chemometric-driven framework for forensic tracing of their synthetic pathways using high-resolution GC × GC-TOFMS. By integrating advanced statistical analysis, we identified 160 synthesis-associated chemical attribution signatures (CAS) for EGA and 138 process-specific CAS for VM, with 11 overlapping markers, including ethoxyphosphates and diethylaminoethylamine derivatives.

View Article and Find Full Text PDF

ANASFV: a workflow for African swine fever virus whole-genome analysis.

Microb Genom

September 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.

African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.

View Article and Find Full Text PDF