Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vitamin A imbalance during pregnancy and lactation is a global public health concern with potentially negative consequences for fetuses and neonates. Inadequate vitamin A intake during this critical period can lead to anemia, weakened immune function, night blindness, and increased susceptibility to infections. Conversely, excessive intake of vitamin A can result in birth defects, hypercalcemia, and psychiatric symptoms. This review aims to identify risk factors contributing to vitamin A deficiency in pregnant women and its impact on maternal, fetal, and neonatal outcomes. It also examines the effects of high-dose vitamin A supplementation during pregnancy on offspring health. By analyzing existing literature and recommendations, the review emphasizes the significance of vitamin A in the development of various body systems and organs. It provides a comprehensive overview of the effects of vitamin A during pregnancy and lactation, encompassing deficiencies, excessive intake, and supplementation guidelines. The need for further research in this field is highlighted. In conclusion, maintaining a balanced vitamin A status is crucial during pregnancy to promote better outcomes for fetuses and newborns. Effective monitoring and intervention strategies are essential to address vitamin A deficiency and excess in pregnant women, thereby improving fetal and neonatal health.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ncp.11096DOI Listing

Publication Analysis

Top Keywords

excessive intake
12
vitamin
10
fetal neonatal
8
neonatal outcomes
8
pregnancy lactation
8
vitamin deficiency
8
pregnant women
8
intake
5
vitamin maternal
4
maternal fetal
4

Similar Publications

Copper (Cu) is an essential micronutrient in various enzymatic and physiological functions. However, excessive copper intake, mainly resulting from industrial emissions and improper agricultural practices, has raised growing concerns due to its toxicological effects, particularly on the male reproductive system. This review summarizes current research progress on copper-induced reproductive toxicity in males, emphasizing its impact on sperm quality, androgen production, and testicular structure and function.

View Article and Find Full Text PDF

Excessive alcohol use causes a great deal of harm and negative health outcomes. Corticotrophin releasing factor (CRF), a stress-related neuropeptide, has been implicated in binge ethanol intake and ethanol dependence in rodents. CRF containing neurons in the bed nucleus of the stria terminalis (BNST) can influence ethanol consumption.

View Article and Find Full Text PDF

Background: Prior longitudinal studies demonstrate that sleep disturbance is a risk factor for alcohol misuse. Experimental research also shows that alcohol intake negatively impacts sleep. The present study evaluated temporal bidirectional relationships between sleep and alcohol intake using intensive longitudinal methods.

View Article and Find Full Text PDF

Pathophysiology and treatment of exercise-associated hyponatremia.

J Endocrinol Invest

September 2025

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.

Exercise associated hyponatremia (EAH) is a medical condition that can occur during physical exertion. Initially, EAH was considered to be restricted to extreme endurance activities, such as ultramarathons and Ironman triathlons. However, it has been more recently recognized in a variety of sports, including team sports and in shorter-duration events.

View Article and Find Full Text PDF

Ruminants rely on hepatic gluconeogenesis to support whole-body glucose metabolism and to supply glucose for lactose synthesis. Understanding the effect of plane of nutrition before parturition on the capacity for hepatic gluconeogenesis in dairy cows may provide a basis for improved cow health and productivity in the subsequent lactation. Our objectives were to determine the effects of far-off (FO) dry period diet, close-up (CU) period diet, and their interaction on adaptations in metabolism of gluconeogenic substrates (Ala and propionate) in liver slices.

View Article and Find Full Text PDF