Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((CHS); = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652268PMC
http://dx.doi.org/10.1021/acsomega.3c04625DOI Listing

Publication Analysis

Top Keywords

graphene/boron nitride
12
polythiophene chs
8
chs units
8
photodegradation mechanism
8
mechanism tetracycline
8
ti-doped graphene/boron
8
nitride ti@gp_bn
8
exciton binding
8
units
5
study
5

Similar Publications

In this paper, magnetically responsive graphene/boron nitride/iron oxide fillers were prepared by growing iron oxide on the surface of graphene/boron nitride fillers via liquid-phase reaction. By adding the composite filler into the epoxy resin and utilising magnetic field-assisted curing, the composites were prepared to effectively improve the thermal conductivity of the composites while maintaining the insulating properties. The thermal conductivity of the composite filler is 2.

View Article and Find Full Text PDF

Drug resistance often involves preventing drug entry or expelling drugs from cells, severely affecting the therapeutic effect. We propose nanofunnel-shaped devices by pairing truncated graphene/boron nitride nanocones and nanotubes using curvature gradients and material properties to modulate energy barriers for unidirectional drug delivery. Molecular dynamics simulations demonstrate spontaneous delivery across models (Δ = -14.

View Article and Find Full Text PDF

The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development of new technologies to control and monitor the application of these compounds, due to their severe environmental and health-related problems. Motivated by these issues, in this work, a hybrid graphene/boron nitride nanopore is explored to detect/identify herbicide molecules (Glyphosate, aminomethylphosphonic acid, Diuron, and 2,4D).

View Article and Find Full Text PDF

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Counterintuitive temperature dependence of isospin flavor polarization has recently been found in twisted bilayer graphene, where unpolarized electrons in a Fermi liquid become a spin-valley polarized insulator upon heating. So far, the effect has been limited to v = +/-1 (one electron/hole per superlattice cell), leaving open questions such as whether it is a general property of symmetry-breaking electronic phases. Here, by studying a rhombohedral trilayer graphene/boron nitride moiré superlattice, we report that at v = -3 a resistive peak emerges at elevated temperatures or in parallel magnetic fields.

View Article and Find Full Text PDF