Differential longitudinal changes of hippocampal subfields in patients with anorexia nervosa.

Psychiatry Clin Neurosci

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Anorexia nervosa (AN) is a mental disorder characterized by dietary restriction, fear of gaining weight, and distorted body image. Recent studies indicate that the hippocampus, crucial for learning and memory, may be affected in AN, yet subfield-specific effects remain unclear. We investigated hippocampal subfield alterations in acute AN, changes following weight restoration, and their associations with leptin levels.

Methods: T1-weighted magnetic resonance imaging scans were processed using FreeSurfer. We compared 22 left and right hemispheric hippocampal subfield volumes cross-sectionally and longitudinally in females with acute AN (n = 165 at baseline, n = 110 after partial weight restoration), healthy female controls (HCs; n = 271), and females after long-term recovery from AN (n = 79) using linear models.

Results: We found that most hippocampal subfield volumes were significantly reduced in patients with AN compared with HCs (~-3.9%). Certain areas such as the subiculum exhibited no significant reduction in the acute state of AN, while other areas, such as the hippocampal tail, showed strong decreases (~-9%). Following short-term weight recovery, most subfields increased in volume. Comparisons between participants after long-term weight-recovery and HC yielded no differences. The hippocampal tail volume was positively associated with leptin levels in AN independent of body mass index.

Conclusions: Our study provides evidence of differential volumetric differences in hippocampal subfields between individuals with AN and HC and almost complete normalization after weight rehabilitation. These alterations are spatially inhomogeneous and more pronounced compared with other major mental disorders (e.g. major depressive disorder and schizophrenia). We provide novel insights linking hypoleptinemia to hippocampal subfield alterations hinting towards clinical relevance of leptin normalization in AN recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488614PMC
http://dx.doi.org/10.1111/pcn.13626DOI Listing

Publication Analysis

Top Keywords

hippocampal subfield
16
hippocampal
8
hippocampal subfields
8
anorexia nervosa
8
subfield alterations
8
weight restoration
8
subfield volumes
8
hippocampal tail
8
differences hippocampal
8
weight
5

Similar Publications

Background: Previous studies indicate that hippocampal (subfield) and amygdala volumes may correlate with specific cognitive functions, coping strategies and emotion regulation. Here, we investigated associations between emotional processing and volumes of hippocampal subfields and amygdala. We focused on depressed patients since emotional dysregulation and hippocampal volume shrinkage are characteristic of them.

View Article and Find Full Text PDF

Background: This study investigates structural abnormalities in hippocampal subfield volumes and shapes, and their association with plasma CC chemokines in individuals with major depressive disorder (MDD).

Methods: A total of 61 patients with MDD and 65 healthy controls (HC) were recruited. All participants underwent high-resolution T1-weighted imaging and provided blood samples for the detection of CC chemokines (CCL2, CCL7, and CCL11).

View Article and Find Full Text PDF

Background: The hippocampus plays a critical role in psychosis, with reduced volume observed across the psychosis continuum. These structural changes are associated with cognitive deficits, symptom severity, and increased risk of psychosis progression. Elevated hippocampal perfusion and glutamate/GABA (gamma-aminobutyric acid) imbalance further suggest metabolic dysregulation as a key mechanism.

View Article and Find Full Text PDF

Hippocampal subfield activity in schizophrenia: Effects of the disease course.

Schizophr Res

September 2025

Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. Electronic address:

Alterations in hippocampal structure and function are established in schizophrenia. However, the specific patterns of hippocampal activity along the schizophrenia course remain unknown. Eighty-five study participants [34 schizophrenia probands (SZ), 32 first-degree relatives (REL), 19 healthy controls (HC)] underwent 3Tesla ultra-high resolution brain MRI (Vascular Space Occupancy); relative cerebral blood volume (rCBV)-an index of regional activity-was estimated across hippocampal subfields: dentate gyrus (DG), CA3, CA1, and subiculum (SUB).

View Article and Find Full Text PDF

Background: High blood pressure (BP) is a known risk factor for cognitive decline and dementia, but the underlying mechanisms are largely unknown. We investigated the associations of cumulative BP exposure with hippocampal subfield volume and cognitive function and determined whether hippocampal subfield atrophy mediates the association between cumulative BP exposure and cognitive decline.

Methods: Between December 2020 and March 2023, participants were prospectively included from the Kailuan study.

View Article and Find Full Text PDF