The spatial and single-cell analysis reveals remodeled immune microenvironment induced by synthetic oncolytic adenovirus treatment.

Cancer Lett

MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oncolytic viruses are multifaceted tumor killers, which can function as tumor vaccines to boost systemic antitumor immunity. In previous study, we rationally designed a synthetic oncolytic adenovirus (SynOV) harboring a synthetic gene circuit, which can kill tumors in mouse hepatocellular carcinoma (HCC) models. In this study, we demonstrated that SynOV could sense the tumor biomarkers to lyse tumors in a dosage-dependent manner, and killed PD-L1 antibody resistant tumor cells in mouse model. Meanwhile, we observed SynOV could cure liver cancer and partially alleviate the liver cancer with distant metastasis by activating systemic antitumor immunity. To understand its high efficacy, it is essential to explore the cellular and molecular features of the remodeled tumor microenvironment (TME). By combining spatial transcriptome sequencing and single-cell RNA sequencing, we successfully depicted the remodeled TME at single cell resolution. The state transition of immune cells and stromal cells towards an antitumor and normalized status exemplified the overall cancer-suppressive TME after SynOV treatment. Specifically, SynOV treatment increased the proportion of CD8 T cells, enhanced the cell-cell communication of Cxcl9-Cxcr3, and normalized the Kupffer cells and macrophages in the TME. Furthermore, we observed that SynOV could induce distant responses to reduce tumor burden in metastatic HCC patient in the Phase I clinical trial. In summary, our results suggest that SynOV can trigger systemic antitumor immunity to induce CD8 T cells and normalize the abundance of immune cells to remodel the TME, which promises a powerful option to treat HCC in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2023.216485DOI Listing

Publication Analysis

Top Keywords

systemic antitumor
12
antitumor immunity
12
synthetic oncolytic
8
oncolytic adenovirus
8
observed synov
8
liver cancer
8
immune cells
8
synov treatment
8
cd8 cells
8
synov
7

Similar Publications

Systemic Delivery of an mRNA-Encoding, Tumor-Activated Interleukin-12 Lock to Eliminate Tumors and Avoid Immune-Related Adverse Events.

Nano Lett

September 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.

Interleukin-12 (IL-12) is a robust proinflammatory cytokine that activates immune cells, such as T cells and natural killer cells, to induce antitumor immunity. However, the clinical application of recombinant IL-12 has been limited by systemic immune-related adverse events (irAEs) and rapid degradation. To address these challenges, we employed mRNA technology to encode a tumor-activated IL-12 "lock" fusion protein that offers both therapeutic efficacy and systemic safety.

View Article and Find Full Text PDF

Efficacious suppression of primary and metastasized liver tumors by polyIC-loaded lipid nanoparticles.

Hepatology

September 2025

Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.

Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.

View Article and Find Full Text PDF

Viral warfare: unleashing engineered oncolytic viruses to outsmart cancer's defenses.

Front Immunol

September 2025

Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.

Oncolytic virotherapy (OVT) has emerged as a promising and innovative cancer treatment strategy that harnesses engineered viruses to selectively infect, replicate within, and destroys malignant cells while sparing healthy tissues. Beyond direct oncolysis, oncolytic viruses (OVs) exploit tumor-specific metabolic, antiviral, and immunological vulnerabilities to reshape the tumor microenvironment (TME) and initiate systemic antitumor immunity. Despite promising results from preclinical and clinical studies, several barriers, including inefficient intratumoral virus delivery, immune clearance, and tumor heterogeneity, continue to limit the therapeutic advantages of OVT as a standalone modality and hindered its clinical success.

View Article and Find Full Text PDF

The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.

View Article and Find Full Text PDF

Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.

View Article and Find Full Text PDF