Predictive Modeling of Tensile Strength in Aluminum Alloys via Machine Learning.

Materials (Basel)

National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aluminum alloys are widely used due to their exceptional properties, but the systematic relationship between their grain size and their tensile strength has not been thoroughly explored in the literature. This study aims to fill this gap by compiling a comprehensive dataset and utilizing machine learning models that consider both the alloy composition and the grain size. A pivotal enhancement to this study was the integration of hardness as a feature variable, providing a more robust predictor of the tensile strength. The refined models demonstrated a marked improvement in predictive performance, with XGBoost exhibiting an value of 0.914. Polynomial regression was also applied to derive a mathematical relationship between the tensile strength, alloy composition, and grain size, contributing to a more profound comprehension of these interdependencies. The improved methodology and analytical techniques, validated by the models' enhanced accuracy, are not only relevant to aluminum alloys, but also hold promise for application to other material systems, potentially revolutionizing the prediction of material properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673535PMC
http://dx.doi.org/10.3390/ma16227236DOI Listing

Publication Analysis

Top Keywords

tensile strength
16
aluminum alloys
12
grain size
12
machine learning
8
alloy composition
8
composition grain
8
predictive modeling
4
tensile
4
modeling tensile
4
strength
4

Similar Publications

Biomechanical comparison of locking plate and pin-tension band wiring fixation for 3D-printed canine patellar fracture repair.

Front Vet Sci

August 2025

Department of Veterinary Surgery, Graduate School of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.

Introduction: The conventional pin and tension band wiring (TBW) technique remains the standard for fixation, but is frequently associated with complications such as wire breakage, loosening, and delayed healing in patellar fracture. Locking plate fixation has demonstrated superior biomechanical stability in human studies. This study aimed to compare the biomechanical performance of locking plate fixation versus TBW in canine transverse patellar fractures and to evaluate the influence of plate design on fixation strength.

View Article and Find Full Text PDF

Poly(glycolic acid) (PGA) is one of the most widely used biodegradable polyesters, but its efficient valorization presents a long-standing challenge. Herein, we report the first facile PGA valorization strategy by utilizing epoxides to upcycle PGA into fused lactones under mild conditions (<100 °C), and subsequent copolymerization to produce copolyesters with wide potential tunability and enhanced performance. In the presence of epoxides and a chromium-based catalyst, PGA was efficiently transformed into fused lactones with a wide range of potential structural adjustability.

View Article and Find Full Text PDF

Modeling the influence of the microbial loading level of fluidized bed granules on physical-mechanical and microbiological tablet properties.

Eur J Pharm Biopharm

September 2025

Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.

In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.

View Article and Find Full Text PDF

Multi-component collaborative design yields robust hydrogel sensors with superior environmental adaptability for machine learning-assisted gesture recognition.

J Colloid Interface Sci

September 2025

Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.

View Article and Find Full Text PDF

Surface nanobubbles nucleated on rough hydrophilic steel exhibit topography-dependent shapes.

J Colloid Interface Sci

September 2025

State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:

Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.

Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.

View Article and Find Full Text PDF