Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Systemic antifungal agents are essential for high-risk patients undergoing immunosuppressive therapy or cancer chemotherapy because of the rapid increase in opportunistic fungal infections. Therapeutic drug monitoring is crucial to ensuring the efficacy and safety of antifungal agents owing to their pharmacokinetic variability. In the present study, we developed and validated a quantitative method for the simultaneous detection of seven commonly used antifungal drugs (amphotericin B, isavuconazole, voriconazole, fluconazole, posaconazole, caspofungin, and micafungin) using liquid chromatography-tandem mass spectrometry. Methanol (containing 0.1% formic acid) was used for protein precipitation and only 50 μL of serum was required for the analysis. Chromatographic separation was conducted using a Waters Acquity UPLC C8 column, and one stable isotope-labeled agent and two analogs were used as internal standards. The calibration curves ranged from 0.1 to 50 μg/mL for all agents, and the correlation coefficient (R) for all calibration curves was above 0.9835. The intra-day precision (1.2-11.2%), inter-day precision (2.4-13.2%), and mean bias values (-10.9 to 13.6%) were within an acceptable range of ±15%. Successful implementation of the developed method in clinical practice would facilitate the effective monitoring of these antifungal agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675106PMC
http://dx.doi.org/10.3390/ph16111537DOI Listing

Publication Analysis

Top Keywords

antifungal agents
16
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
calibration curves
8
antifungal
5
agents
5
simultaneous quantification
4
quantification antifungal
4
agents human
4

Similar Publications

Coffee plants and beans are prone to fungal contamination that pose health risks to consumers by producing mycotoxins like ochratoxin A (OTA). Thus, the present study aimed to analyze the mycobiota of Costa Rican coffee beans, focusing on potentially ochratoxigenic species and their in vitro susceptibility patterns to antifungal agents. Fungal isolates were obtained from cherry, green, and roasted coffee beans from Costa Rica; they were identified by morphology, MALDI-TOF technology, and sequencing.

View Article and Find Full Text PDF

Design and Synthesis of Structurally Novel Acridospiroisoxazole Derivatives and Their Antifungal Activity Study.

Chem Biodivers

September 2025

Key Lab of Natural Product Chemistry and Application at Universities of Education, Department of Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Yili Normal University, Xinjiang, China.

The persistent threat posed by phytopathogenic fungi to agricultural systems underscores the critical need for novel fungicides. Here, we synthesized and characterized a series of novel acridospiroisoxazole derivatives (H1-H36) using H/C NMR and mass spectrometry. The absolute configuration of compound H23 was confirmed using single-crystal x-ray diffraction analysis.

View Article and Find Full Text PDF

Biofilms are a primary form of device-associated infections and typically exhibit high tolerance to antimicrobial agents. In biofilms formed by multiple microbial species, microorganisms may show even greater tolerance, complicating treatment. There is evidence that meropenem (MEPM) tolerance in is increased in dual-species biofilms with , and effective treatments have not been established.

View Article and Find Full Text PDF

Introduction: The objective of the World Health Organization is to achieve the interruption of human African trypanosomiasis (HAT) transmission by 2030.

Methods: This review aims to update knowledge on HAT, through a synthesis on the epidemiology, diagnostic tools and drugs of HAT.

Results: From 1960 to 2024 approximately 132,063 cases of HAT have been reported across Africa.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.

View Article and Find Full Text PDF