Complete Chloroplast Genomes of , , and : Genome Structures and Comparative and Phylogenetic Analyses.

Genes (Basel)

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

plants are widely distributed in Asia and Europe; however, their complex phylogenetic relationships have led to many difficulties in phylogenetic studies and interspecific identification. In this study, we assembled, annotated, and analyzed the chloroplast genomes of three plants: , , and . The results showed that the full-length sequences of the three plants were 152,561 bp, 151,452 bp, and 152,293 bp, respectively, which represent the typical quadripartite structure, and the genomes were relatively conserved. The gene annotation results showed that the chloroplast genomes of , , and were annotated with 128, 124, and 127 unique genes, respectively, which included 83, 80, and 83 protein-coding genes (PCGs), respectively, 37, 36, and 36 tRNA genes, respectively, and 8 rRNA genes. Moreover, 46, 45, and 43 SSR loci, respectively, and nine highly variable regions (, , , , , , , , and ) were identified and could be used as potential molecular markers for population identification and phylogenetic study of plants. Phylogenetic analyses strongly support the sisterhood of with and , and are all clustered with , , , and , of which is most closely related. Additionally, the phylogenetic results indicate a high frequency of differentiation among different species of plants, and many different species or genera are morphologically very different from each other, which may be related to certain genetic material in the chloroplasts. This study provides an important reference for the identification of plants and studies their evolution and phylogenetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10670953PMC
http://dx.doi.org/10.3390/genes14112002DOI Listing

Publication Analysis

Top Keywords

chloroplast genomes
12
phylogenetic analyses
8
three plants
8
phylogenetic
6
plants
6
complete chloroplast
4
genomes
4
genomes genome
4
genome structures
4
structures comparative
4

Similar Publications

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

Linnaeus 1753 is a herbaceous perennial medicinal plant of the family Scrophulariaceae, native throughout eastern and central North America. In this study, the first complete chloroplast genome of was reported and phylogenetic analysis was conducted with other 11 species from Scrophulariaceae. The chloroplast genome was 152,414 bp with 132 genes and includes a large single-copy (LSC) region (83,583 bp), a small single-copy (SSC) region (17,925 bp), and a pair of inverted repeat (IRs) regions (25,453 bp).

View Article and Find Full Text PDF

Comprehensive sampling from mitochondrial genomes substantiates the Neoproterozoic origin of land plants.

Plant Commun

September 2025

College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Molecular phylogenetics illustrates the evolution and divergence of green plants by employing sequence data from various sources. Interestingly, phylogenetic reconstruction based on mitochondrial genes tends to exhibit incongruence with those derived from nuclear and chloroplast genes. Although the uniparental inheritance and conservatively retained protein-coding genes of mitochondrial genomes inherently exclude certain potential factors that affect phylogenetic reconstruction, such as hybridization and gene loss, the utilization of mitochondrial genomes for phylogeny and divergence time estimation remains limited.

View Article and Find Full Text PDF

The complete chloroplast genome of Franch. & Sav. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.

Here, we present the first complete chloroplast genome of (154,018 bp), which exhibits a typical quadripartite structure, including an LSC (83,966 bp), SSC (18,910 bp), and two IRs (25,571 bp each). A total of 133 genes were annotated, with 114 unique genes and 19 duplicated in the IRs. .

View Article and Find Full Text PDF

The complete chloroplast genome of L. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Heze Municipal Bureau of Agriculture and Rural Affairs, Heze, P. R. China.

L. 1753 is a perennial herb of the family Asteraceae, often cultivated as an ornamental flower. The species has also been reported to contain a wide range of phytochemicals and to exhibit diverse pharmacological activities.

View Article and Find Full Text PDF