Modulating Skeletons of Covalent Organic Framework for High-Efficiency Gold Recovery.

Angew Chem Int Ed Engl

CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Covalent organic frameworks (COFs) have attracted considerable attention as adsorbents for capturing and separating gold from electronic wastes. To enhance the binding capture efficiency, constructing hydrogen-bond nanotraps along the pore walls was one of the most widely adopted approaches. However, the development of absorbing skeletons was ignored due to the weak binding ability of the gold salts (Au). Herein, we demonstrated skeleton engineering to construct highly efficiently absorbs for Au capture. The strong electronic donating feature of diarylamine units enhanced the electronic density of binding sites (imine-linkage) and thus resulted in high capacities over 1750 mg g for all three COFs. Moreover, the absorbing performance was further improved via the ionization of diarylamine units. The ionic COF achieved 90 % of the maximal adsorption capacity, 1.63 times of that from the charge-neutral COF within ten minutes, and showed remarkable uptakes of 1834 mg g , exceptional selectivity (97.45 %) and cycling stability. The theoretical calculation revealed the binding sites altering from imine bonds to ionic amine sites after ionization of the frameworks, which enabled to bind the AuCl via coulomb force and contributed to enhanced absorbing kinetics. This work inspires us to design molecular/ionic capture based on COFs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202317015DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
diarylamine units
8
binding sites
8
modulating skeletons
4
skeletons covalent
4
organic framework
4
framework high-efficiency
4
high-efficiency gold
4
gold recovery
4
recovery covalent
4

Similar Publications

Adjusting interlayer interactions and proton-conduction pathways of 2D covalent organic frameworks through the rotaxane structures.

Natl Sci Rev

September 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China.

Covalent organic frameworks (COFs) have great potential as versatile platforms for proton conduction. However, the commonly applied 2D COFs that are easy to design and synthesize have only 1D channels for proton conduction, limiting the formation of continuous hydrogen bonds due to the anisotropy between their crystalline grains. Herein, we report a strategy to construct 3D channels in 2D COFs by using rotaxane structures and eliminate the strong interlayer π-π interactions, facilitating the formation of smooth 3D proton-transfer pathways during guest doping.

View Article and Find Full Text PDF

Photoacoustic-imaging nanomotors enhance tumor penetration and alleviate hypoxia for photodynamic therapy of breast cancer.

Biomater Sci

September 2025

Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@

Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

This study focuses on designing and developing a novel three-dimensional porphyrinic covalent organic framework (3D-Por-COF) to enhance anticancer sono-photodynamic therapy (SPDT). Leveraging the unique structural advantages of 3D COFs, this work addresses the limitations of traditional 2D-Por-COFs, particularly regarding reactive oxygen species (ROS) production and therapeutic efficacy. The newly developed 3D-Por-COF demonstrated significantly higher ROS generation under combined sonodynamic and photodynamic conditions, leading to an improved therapeutic effect against prostate cancer cells.

View Article and Find Full Text PDF

Truxenone-Based Covalent Organic Framework/Carbon Nanotube Composite for High-Performance Low-Temperature Sodium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.

Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.

View Article and Find Full Text PDF