98%
921
2 minutes
20
Neonicotinoid insecticides are widely applied in farmland, with high detection rates in soils and surface waters, posing potential risks to biodiversity and human health. As a nonpoint emission, surface runoff is widely regarded as the major source of neonicotinoid pollution in surface waters, but few studies have determined the point source contribution to rivers that may be primarily from wastewater treatment plants (WWTPs). Here, we collected the surface water from eight river basins in Zhejiang Province of China and quantified residual concentrations of eight widely commercialized neonicotinoids. Four of these were detected in all samples, with concentrations of dinotefuran and nitenpyram of 119 ± 166 and 87.6 ± 25.3 ng/L, respectively, representing more than 90 % of the total (282 ± 174 ng/L). Neonicotinoid residues were higher in tributaries due to nearby farmland and more dilution effects in the mainstream, and the residues were higher in lower reaches which can be explained by the water flow direction. Significant spatial differences in neonicotinoid distribution between surface water and agricultural soils result from environmental factors (e.g., water turbidity, precipitation, temperature) impacting migration and transport processes. Neonicotinoid residues in surface water showed a significant positive correlation with total WWTP emissions after adjusting for environmental factors. Conversely, no significant association was observed with cropland density (a nonpoint emission source), indicating that point emission source (contributing 20.6 %) predominantly influenced neonicotinoid residue spatial variation in river basin-scale surface water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120863 | DOI Listing |
Macromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDFNano Lett
September 2025
State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, United States.
Merocyanine photoacids (MCHs) have found applications in chemical, material, energy, and biomedical areas, and are currently being investigated for industrial applications. Hydrolysis, relatively high dark acidity, and moderate solubility in water are the major concerns for their practical applications. Inspired by the structure of the cell membrane, we incorporated the most commonly used MCH into sodium dodecyl sulfate (SDS) micelles.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Applied Sciences, National Institute of Technology Delhi, Delhi 110036, India.
The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy.
The equilibration dynamics of ultrastable glasses subjected to heating protocols has attracted recent experimental and theoretical interest. With simulations of the mW water model, we investigate the devitrification and "melting" dynamics of both conventional quenched (QG) and vapor deposited (DG) amorphous ices under controlled heating ramps. By developing an algorithm to reconstruct hydrogen-bond networks, we show that bond ring statistics correlate with the structural stability of the glasses and allow tracking crystalline and liquid clusters during devitrification and melting.
View Article and Find Full Text PDF