98%
921
2 minutes
20
Ehrlichia is Gram negative obligate intracellular bacterium that cause human monocytotropic ehrlichiosis (HME). HME is characterized by acute liver damage and inflammation that may progress to fatal toxic shock. We previously showed that fatal ehrlichiosis is due to deleterious activation of inflammasome pathways, which causes excessive inflammation and liver injury. Mammalian cells have developed mechanisms to control oxidative stress via regulation of nuclear factor erythroid 2 related 2 (NRF2) signaling. However, the contribution of NRF2 signaling to Ehrlichia-induced inflammasome activation and liver damage remains elusive. In this study, we investigated the contribution of NRF2 signaling in hepatocytes (HCs) to the pathogenesis of Ehrlichia-induced liver injury following infection with virulent Ixodes ovatus Ehrlichia (IOE, AKA E. japonica). Employing murine model of fatal ehrlichiosis, we found that virulent IOE inhibited NRF2 signaling in liver tissue of infected mice and in HCs as evidenced by downregulation of NRF2 expression, and downstream target GPX4, as well as decreased NRF2 nuclear translocation, a key step in NRF2 activation. This was associated with activation of non-canonical inflammasomes pathway marked by activation of caspase 11, accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Mechanistically, treatment of IOE-infected HCs with the antioxidant 3H-1,2-Dithiole-3-Thione (D3T), that induces NRF2 activation, attenuated oxidative stress and caspase 11 activation, as well as restored cell viability. Importantly, treatment of IOE-infected mice with D3T resulted in attenuated liver pathology, decreased inflammation, enhanced bacterial clearance, prolonged survival, and resistance to fatal ehrlichiosis. Our study reveals, for the first time, that targeting anti-oxidative signaling pathway is a key approach in the treatment of severe and potential Ehrlichia-induced acute liver injury and sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681308 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1011791 | DOI Listing |
Cell Rep
September 2025
Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berk
Centered on the transcription factor NRF2 and its E3 ligase CUL3, the oxidative stress response protects cells from damage by reactive oxygen species (ROS). Increasing ROS inhibits CUL3 to stabilize NRF2 and elicit antioxidant gene expression, while cells recovering from stress rapidly turn over NRF2 again to prevent reductive stress and oxeiptosis-dependent death. How cells reinitiate NRF2 degradation after ROS have been cleared remains poorly understood.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).
Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.
Biochem Pharmacol
September 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.
View Article and Find Full Text PDFTissue Cell
September 2025
Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, China. Electronic address:
Cholestasis is a pathological state characterized by the dysfunction of bile acid flow, which could lead to liver fibrosis, cirrhosis, and even liver failure, but its therapeutic agents are limited. The aim of this study was to investigate the therapeutic potential and underlying mechanism of melatonin on cholestatic liver injury. C57BL/6 J mice were fed with 0.
View Article and Find Full Text PDFBioorg Chem
September 2025
Key Innovation Laboratory for Deep and Intensive Processing of Yanbian High Quality Beef (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Yanbian University, Yanji 133002, PR China; Department of Food Science and Technology, College of Agricultural, Yanbian Univ
In this study, bovine peptide‑calcium chelates (BBP-Ca) were prepared via enzymatic hydrolysis to generate peptides and fermentation to obtain soluble calcium ions, which were then chelated together. The structural characteristics of BBP-Ca were comprehensively analyzed using FTIR, SEM, and UV spectroscopy. Additionally, its antioxidant capacity was evaluated by examining its protective effects against oxidative stress-induced damage in Caco-2 cells.
View Article and Find Full Text PDF