98%
921
2 minutes
20
The growing demand for Artemisia annua plants in healthcare, food, and pharmaceutical industries has led to increased cultivation efforts to extract a vital compound, Artemisinin. The efficacy of Artemisinin as a potent drug against malaria disease is well established but its limited natural abundance. However, the common practice of using chemical fertilizers for maximum yield has adverse effects on plant growth, development, and the quality of phytochemicals. To address these issues, the review discusses the alternative approach of harnessing beneficial rhizosphere microbiota, particularly plant growth-promoting rhizobacteria (PGPR). Microbes hold substantial biotechnological potential for augmenting medicinal plant production, offering an environmentally friendly and cost-effective means to enhance medicinal plant production. This review article aims to identify a suitable endophytic population capable of enabling Artemisia sp. to thrive amidst abiotic stress while simultaneously enhancing Artemisinin production, thereby broadening its availability to a larger population. Furthermore, by subjecting endophytes to diverse combinations of harsh conditions, this review sheds light on the modulation of essential artemisinin biosynthesis pathway genes, both up regulated and down regulated. The collective findings suggest that through the in vitro engineering of endophytic communities and their in vivo application to Artemisia plants cultivated in tribal population fields, artemisinin production can be significantly augmented. The overall aim of this review to explore the potential of harnessing microbial communities, their functions, and services to enhance the cultivation of medicinal plants. It outlines a promising path toward bolstering artemisinin production, which holds immense promise in the fight against malaria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-023-03516-5 | DOI Listing |
Recent Pat Anticancer Drug Discov
September 2025
School of Pharmacy, Devi Ahilya Vishwavidalaya, Indore, M.P., India.
Artemisinin, a natural compound derived from Artemisia annua, has significantly impacted the treatment of malaria and has shown promise in various other therapeutic applications. This review explores the molecular structure of artemisinin and its derivatives, as well as advancements in synthetic and semi-synthetic production methods, and their broader therapeutic effects beyond malaria, including potential uses in cancer, neurological disorders, and viral infections. It also discusses contemporary drug delivery innovations, such as nanoparticles and liposomal systems, which aim to enhance the bioavailability and targeted action of artemisinin, while addressing issues of drug resistance, particularly in parasitic diseases like malaria.
View Article and Find Full Text PDFGenome Biol
September 2025
Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China. zhangfengzmc
Background: Parkinson's disease is a highly prevalent neurodegenerative disorder. Hyposecretion of dopamine (DA) is the end result in the pathology of Parkinson's disease. Unfortunately, safe and efficient therapeutic drugs are deficient.
View Article and Find Full Text PDFBiomolecules
July 2025
Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310000, China.
Systemic lupus erythematosus (SLE) is characterized by autoimmune dysregulation, elevated autoantibody production, and persistent inflammation, predisposing patients to atherosclerosis (AS). Atherogenesis is dependent on lipid homeostasis and inflammatory processes, with the formation of lipid-laden, macrophage-derived foam cells (MDFC) essential for atherosclerotic lesion progression. Elevated cholesterol levels within lipid rafts trigger heightened pro-inflammatory responses in macrophages via Toll-like receptor 9 (TLR9).
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, Guangdong, 523000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Me
Radix Bupleuri polysaccharides (RBP) are heteropolysaccharides with a molecular weight distribution ranging from 1.10 to 121.21 kDa, extracted from the traditional Chinese medicinal herb Radix Bupleuri.
View Article and Find Full Text PDFJ Anim Sci
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
The medicinal herb Artemisia annua L. has traditionally been used to promote human and animal health. One of the most important bioactive metabolites is dihydroartemisinin; however, its impact on intestinal health in broilers has not been sufficiently researched.
View Article and Find Full Text PDF