Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Widespread saline soils in Northwest China pose a serious threat to the region's ability to use infrastructure safely because they are prone to soil structure damage when subjected to external environmental fluctuations, which in turn affects the stability of the foundations for buildings. The non-destructive approach of measuring resistivity can be used to swiftly reflect the subsoil body's state and make assumptions about its safety. However, the electrical resistivity of the underground soil body can be used to quickly identify unstable areas because the resistivity is influenced by the water content, salt content, and structural characteristics of the soil body. To do this, it is necessary to understand the coupling relationship between various factors. In this study, we first constructed samples with various water, salt, and soil structure characteristics, and then used indoor tests, such as soil resistivity measurement and thermogravimetric analysis, to analyze the multiple factors affecting the resistivity characteristics of the soil. The relationship between soil resistivity and actual saline soil diseases in Northwest China was then further discussed in conjunction with the results of the indoor tests and analyses. subsequently, the resistivity and soil properties have been measured in the field at specific locations in Northwest China where railway roadbeds are diseased. The study's findings can theoretically support a deeper comprehension of the law and mechanism of soil resistivity change, as well as provide assistance for building infrastructure in Northwest China.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117608DOI Listing

Publication Analysis

Top Keywords

northwest china
20
soil resistivity
12
soil
10
coupling relationship
8
saline soils
8
soil structure
8
resistivity
8
soil body
8
characteristics soil
8
indoor tests
8

Similar Publications

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF

Developing artificial hosts with temperature-driven conformational switching behaviors facilitates our understanding of the temperature-dependent allostery and adaptation mechanisms in natural recognition systems. Herein, we report the design and synthesis of three pairs of water-soluble, enantiomeric binaphthalene-based tetraimidazolium macrocycles (SS/RR-1•4Cl- - SS/RR-3•4Cl-) as artificial hosts for exploring sequence-selective recognition of dinucleotides in aqueous media. Owing to the reversible rotational conformation of axially chiral binaphthyl units, SS-1•4Cl- demonstrates the conformational switching, converting from cis-conformation (SS-1) to trans-conformation (SS-1) by increasing temperature, thereby causing the recognition cavity to transition from a closed to an open state.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

How terrestrial mean annual temperature (MAT) evolved throughout the past 2 million years (Myr) remains elusive, limiting our understanding of the patterns, mechanisms, and impacts of past temperature changes. Here we report a ~2-Myr terrestrial MAT record based on fossil microbial lipids preserved in the Heqing paleolake, East Asia. The increased amplitude and periodicity shift of glacial-interglacial changes in our record align with those in sea surface temperature (SST) records.

View Article and Find Full Text PDF

Impact of orthokeratology lens decentration on axial length growth in Chinese myopic children: A meta-analysis.

Cont Lens Anterior Eye

September 2025

Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China. Electronic address:

Background: Orthokeratology (OK) lenses have become a prevalent intervention for myopia control. However, lens decentration, a frequent complication, may influence the efficacy of myopia control. The aim of this study was to systematically assess the impact of OK lens decentration on axial length growth (ALG) in Chinese myopic children through a meta-analysis.

View Article and Find Full Text PDF