98%
921
2 minutes
20
The practical implementation of memristors in neuromorphic computing and biomimetic sensing suffers from unexpected temporal and spatial variations due to the stochastic formation and rupture of conductive filaments (CFs). Here, the biocompatible silk fibroin (SF) is patterned with an on-demand nanocone array by using thermal scanning probe lithography (t-SPL) to guide and confine the growth of CFs in the silver/SF/gold (Ag/SF/Au) memristor. Benefiting from the high fabrication controllability, cycle-to-cycle (temporal) standard deviation of the set voltage for the structured memristor is significantly reduced by ≈95.5% (from 1.535 to 0.0686 V) and the device-to-device (spatial) standard deviation is also reduced to 0.0648 V. Besides, the statistical relationship between the structural nanocone design and the resultant performance is confirmed, optimizing at the small operation voltage (≈0.5 V) and current (100 nA), ultrafast switching speed (sub-100 ns), large on/off ratio (10 ), and the smallest switching slope (SS < 0.01 mV dec ). Finally, the short-term plasticity and leaky integrated-and-fire behavior are emulated, and a reliable thermal nociceptor system is demonstrated for practical neuromorphic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202308843 | DOI Listing |
ACS Nano
September 2025
School of Medicine, Nankai University, Tianjin 300071, China.
In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med
Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Ophthalmology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, China.
Pterygium is a common ocular surface lesion, and postoperative recurrence remains a major challenge due to insufficient therapeutic strategies targeting fibroblast proliferation and inflammation. Fibrinogen hydrogel (Fibrin glue, FG), a bioadhesive hydrogel, is widely used in pterygium surgery to secure conjunctival autografts. However, its low adhesion often leads to graft detachment, hindering effective repair.
View Article and Find Full Text PDFJ Orthop Translat
November 2025
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Interdisciplinary Innovation Center for Nanomedicine, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow Universi
Background: Intervertebral disc (IVD) herniation is a major cause of low back pain and disability, with microdiscectomy being the standard surgical treatment. However, microdiscectomy fails to address annulus fibrosus (AF) defects, increasing the risk of recurrent herniation. Current therapeutic strategies for this condition remain limited in efficacy.
View Article and Find Full Text PDF