98%
921
2 minutes
20
Background: Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer.
Methods: In this study, we introduce an innovative approach of nano-photosensitizer based on Verteporfin, which was prepared by utilizing macrophage membrane to coat Verteporfin-loaded zeolitic imidazolate framework 8 (ZIF-8) for effective photodynamic therapy against oral cancer. Nanoparticle characteristics were assessed including size, zeta potential, and PDI. Cellular uptake studies were conducted using CAL-27 cells. Furthermore, inhibitory effects in both in vitro and in vivo settings were observed, ensuring biosafety. Assessment of anticancer efficacy involved tumor volume measurement, histological analyses, and immunohistochemical staining.
Results: In vitro experiments indicated that the nano-photosensitizer showed efficient cellular uptake in the oral cancer cells. Upon the laser irradiation, the nano-photosensitizer induced the generation of reactive oxygen species (ROS), leading to cancer cell apoptosis. The in vivo experiments indicated that the coating with cell membranes enhanced the circulation time of nano-photosensitizer. Moreover, the specificity of the nano-photosensitizer to the cancer cells was also improved by the cell membrane-camouflaged structure in the tumor-bearing mouse model, which inhibited the tumor growth significantly by the photodynamic effect in the presence of laser irradiation.
Conclusion: Overall, our findings demonstrate the potential of macrophage membrane-coated ZIF-8-based nanoparticles loaded with Verteporfin for effective photodynamic therapy in oral cancer treatment. This nano-system holds promise for synergistic cancer therapy by combining the cytotoxic effects of PDT with the activation of the immune system, providing a novel therapeutic strategy for combating cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625746 | PMC |
http://dx.doi.org/10.2147/IJN.S434917 | DOI Listing |
BMC Oral Health
September 2025
Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Background: A modified pull-through approach represents a promising treatment strategy to access tumors in the posterior oral cavity. The design of the wedge osteotomy plays a key role in preserving postoperative mechanical stability while enabling surgical access. However, the optimal osteotomy design to reduce fracture risk remains unclear.
View Article and Find Full Text PDFOral Maxillofac Surg
September 2025
Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Shinmachi 2-5-1, Hirakata-city, Osaka, Japan.
Purpose: For submandibular gland resection, conventional surgery with the naked eye remains the standard. With its excellent automatic focus and high magnification, the ORBEYE 3D exoscope enables precise submandibular gland resection with less stress. Therefore, we aimed to examine the usefulness of the exoscope in submandibular gland resection.
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFBr J Cancer
September 2025
Institute of Life Sciences, Bhubaneswar, Odisha, India.
Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.
Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.
Oral Oncol
September 2025
Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India. Electronic address: