Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ball milling is used, not only to reduce the particle size of pharmaceutical powders, but also to induce changes in the physical properties of drugs. In this work we prepared three crystal forms of furosemide (forms Ⅰ, Ⅱ, and Ⅲ) and studied their solid phase transformations during ball milling. Powder X-ray diffraction and modulated differential scanning calorimetry were used to characterize the samples after each milling time on their path to amorphization. Our results show that forms Ⅰ and III directly converted into an amorphous phase, while form Ⅱ first undergoes a polymorphic transition to form Ⅰ, and then gradually loses its crystallinity, finally reaching full amorphousness. During ball milling of forms Ⅰ and Ⅱ, the glass transition temperature (T) of the amorphous fraction of the milled material remains almost unchanged at 75 °C and 74 °C, respectively (whilst the amorphous content increases). In contrast, the T values of the amorphous fraction of milled form III increase with increasing milling times, from 63 °C to 71 °C, indicating an unexpected phenomenon of amorphous-to-amorphous transformation. The amorphous fraction of milled forms I and II samples presented a longer structural relaxation (i.e., lower molecular mobility) than the amorphous fraction of milled form III samples. Moreover, the structural relaxation time remained the same for the increasing amorphous fraction during milling of forms I and II. In contrast, the structural relaxation times were always shorter for the amorphous fraction of form III, but increased with increasing amorphous content during milling, confirming amorphous-to-amorphous transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123573DOI Listing

Publication Analysis

Top Keywords

amorphous fraction
24
ball milling
16
fraction milled
16
forms Ⅰ
12
form iii
12
structural relaxation
12
amorphous
9
milling
8
phase transformations
8
transformations ball
8

Similar Publications

Objectives: Norvir oral powder [ritonavir (RTV)] employs polyvinylpyrrolidone/vinyl acetate as the polymer to formulate an amorphous solid dispersion. Its oral absolute bioavailability is 70% in the fasted state, and it has negative food effects. The aim of this study was to perform in vitro dissolution of Norvir powder and Wagner-Nelson deconvolution of data under fasted, moderate fat, and high fat conditions in order to elucidate the relevance of dissolution testing.

View Article and Find Full Text PDF

Forest soil properties regulate arsenic mobility and life stage-specific ecotoxicity in Collembola: Implications for early-stage contamination risk.

J Hazard Mater

September 2025

Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea. Electronic address:

Arsenic (As) contamination from abandoned gold mines threatens adjacent ecosystems through leaching and erosion. This study investigated how soil physicochemical properties regulate As binding forms upon initial contamination and associated ecotoxicological effects on soil invertebrates. Forest soils (0-10 cm depth) were collected from four mountainous sites across Korea with varying physicochemical properties.

View Article and Find Full Text PDF

Background: Iron plaque on the rice rhizoplane could potentially prevent cadmium (Cd) entry into plant roots. A hydroponic experiment was conducted to study the morphological characteristics and mineral compositions of iron plaque, Cd immobilization mechanism by iron plaque, and its effect on Cd uptake and transport in rice.

Results: Exogenous divalent iron ion (Fe(II)) could induce the formation of deep-red iron plaque on rice rhizoplane, which primarily consisted of ferrihydrite, goethite, hematite, iron phosphate, and iron sulfate compounds.

View Article and Find Full Text PDF

Growing interest in organic electrochemical synaptic transistors (OECT-STrs) based on conjugated polymer mixed ionic-electronic conductors (CP-MIECs) has intensified, leading to the need to establish clear design rules and fundamentally understand the distinct roles of crystalline and amorphous domains in the electrochemical doping behavior of CP-MIEC films. Here, OECT-STrs based on regioregular-block-regiorandom (regioblock) conjugated copolymers with precisely controlled crystallinity are demonstrated. The crystallinity of a poly(3-hexylthiophene) regioblock copolymer is systematically tuned by varying the fraction of regiorandom blocks without altering the geometry or orientation of the crystalline phase.

View Article and Find Full Text PDF

In recent years, the use of supplementary cementitious materials (SCMs) in building materials has increased due to concerns about CO emissions from the cement industry. On the other hand, the scarcity of traditional sources of SCMs in certain regions exacerbates the issue of high demand for these materials in concrete production. In this context, this article explores the chemical, mineralogical, morphological, and physical properties and pozzolanic activity of two types of diatomaceous earth (DE) obtained from industrial waste and by-products.

View Article and Find Full Text PDF