Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrated the effects of substituents in fluorescein on the photoredox catalytic performance under visible light. For the systematic investigation, the phenyl ring of fluorescein was substituted with six different functional groups (i.e., amine, amide, isothiocyanate, aminomethyl, bromo, or nitro group) at the 5- or 6-position. The fluorescein derivatives were carefully characterized through photophysical and electrochemical analyses. The substituent effects were estimated by comparing the photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) and -vinylpyrrolidone (VP) in the presence of triethanolamine (TEOA) under aerobic conditions to that of intact fluorescein. As a result, the amine and nitro groups exhibited the lowest performances, presumably due to intramolecular photoinduced electron transfer (PET) promoted by the strong electron push-pull effect. The others, representative moderate or weak deactivators and activators, exhibited inferior performances than intact fluorescein, presumably owing to the more negative Δ values, resulting in a decreased rate of intermolecular PET. These results are crucial for understanding the structure-performance relationship and the development of visible-light photoredox catalysts with improved performance and functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620908PMC
http://dx.doi.org/10.1021/acsomega.3c04324DOI Listing

Publication Analysis

Top Keywords

substituent effects
8
fluorescein photoredox
8
performance visible
8
visible light
8
intact fluorescein
8
fluorescein
6
effects fluorescein
4
photoredox initiating
4
initiating performance
4
light demonstrated
4

Similar Publications

In the field of theranostics, triaminophenaziniums are promising molecules due to their intrinsic properties such as an absorbance beyond 500 nm associated with large molar extinction coefficients, high fluorescence quantum yields, as well as phototoxicity. This study explored how three triaminophenazinium salts relate in structure and activity, highlighting their potential as theranostic agents. The nature of the moiety in position 2 of the dyes was varied from H, to -CH or -Bu.

View Article and Find Full Text PDF

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF

Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.

View Article and Find Full Text PDF

Structurally unique halichonine B is promising for the design of pharmaceutical leads, while function-oriented optimization is unknown in agrochemical science. Our recent practical synthesis offers a great chance for the discovery of antimicrobial leads. "Linker plus replaceable substituents" is exerted, in which up to 9 unique linkers together with diverse substituents from a wide chemical space are investigated for optimization of the readily available drimanyl amine.

View Article and Find Full Text PDF

Currently, most sulfoximine clinical candidates feature both -aryl and -alkyl substituents. The asymmetric synthesis of these compounds typically relies on oxidizing corresponding enantioenriched sulfilimines. Herein, we describe an effective catalytic system comprising CuI and an azabicyclo[2.

View Article and Find Full Text PDF