98%
921
2 minutes
20
Exfoliated magnetic 2D materials enable versatile tuning of magnetization, e.g., by gating or providing proximity-induced exchange interaction. However, their electronic band structure after exfoliation has not been probed, presumably due to their photochemical sensitivity. Here, we provide micrometer-scale angle-resolved photoelectron spectroscopy of the exfoliated intralayer antiferromagnet MnPS above and below the Néel temperature down to one monolayer. Favorable comparison with density functional theory calculations enables identifying the orbital character of the observed bands. Consistently, we find pronounced changes across the Néel temperature for bands consisting of Mn 3d and 3p levels of adjacent S atoms. The deduced orbital mixture indicates that the superexchange is relevant for the magnetic interaction. There are only minor changes between monolayer and thicker films, demonstrating the predominant 2D character of MnPS. The novel access is transferable to other MPX materials (M: transition metal, P: phosphorus, X: chalcogenide), providing several antiferromagnetic arrangements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c02906 | DOI Listing |
RSC Adv
September 2025
Computational Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.
View Article and Find Full Text PDFChem Sci
September 2025
School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China
To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore.
Electromagnetic pollution poses significant risks to electronic devices and human health, highlighting the need for mechanically robust, lightweight, and cost-effective electromagnetic interference (EMI) shielding materials. 3D-printed structures with nanomaterial-engineered surfaces offer a promising method for tailoring mechanical and electrical properties through multiscale design. Herein, we present a facile strategy for fabricating lightweight and flexible EMI shielding structures by chemical deposition of nanostructured metal coatings onto 3D-printed polymeric substrates.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
Two-dimensional van der Waals (2D-vdW) semiconducting ferroelectrics, such as CuInPSe (CIPSe) and CuInPS (CIPS), offer unique opportunities for lightweight, scalable, low-power nanoscale electronic devices. However, the limited pool of functional 2D-vdW ferroics highlights the need for clear design principles that can be used to guide experiments. Here, we use first-principles density functional theory (DFT) to study how isovalent atomistic substitution at In and P sites modifies structure, polarization, and electronic properties in CIPSe and CIPS.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDF