Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methane and carbon dioxide are the main contributors to global warming, with the methane effect being 25 times more powerful than carbon dioxide. Although the sources of methane are diverse, it is a very volatile and explosive gas. One way to store the energy content of methane is through its conversion to methanol. Methanol is a liquid under ambient conditions, easy to transport, and, apart from its use as an energy source, it is a chemical platform that can serve as a starting material for the production of various higher-value products. Accordingly, the transformation of methane to methanol has been extensively studied in the literature, using traditional catalysts as different types of zeolites. However, in the last few years, a new generation of catalysts has emerged to carry out this transformation with higher conversion and selectivity, and more importantly, under mild temperature and pressure conditions. These new catalysts typically involve the use of a highly porous supporting material such as zeolite, or more recently, metal-organic frameworks (MOFs) and graphene, and metallic nanoparticles or a combination of different types of nanoparticles that are the core of the catalytic process. In this review, recent advances in the porous supports for nanoparticles used for methane oxidation to methanol under mild conditions are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609106PMC
http://dx.doi.org/10.3390/nano13202754DOI Listing

Publication Analysis

Top Keywords

methane methanol
8
traditional catalysts
8
metal-organic frameworks
8
carbon dioxide
8
methane
7
methanol
5
advances catalytic
4
catalytic conversion
4
conversion methane
4
methanol challenges
4

Similar Publications

Upgrading methane to value-added chemicals is significant but still challenging. Well-designed catalysts are required to activate methane. Extensive efforts have been dedicated to the catalytic conversion of methane over transition-metal-containing catalysts.

View Article and Find Full Text PDF

Methane is a notorious and potent greenhouse gas with a greenhouse effect potential 25 times higher than carbon dioxide. Current technologies for methane are limited by high energy demands, CO emissions and by-product pollution, and costly catalysts. Hence, it is urgent to seek clean processing technologies that can utilize its dual properties as an energy source and raw chemical feedstock to unlock its full potential and contribute to environmental remediation.

View Article and Find Full Text PDF

Accurate prediction of free energy changes (Δ) for the vast network of reaction intermediates in the electrocatalytic CO reduction reaction (CORR) is essential for evaluating catalytic performance. We combined density functional theory (DFT) and machine learning (ML) to screen 25 single-atom catalysts (SACs) on defective γ-GeSe monolayers for CO reduction to methanol, methane, and formic acid. Among nine ML models evaluated with 14 features, the XGBoost performed best (R = 0.

View Article and Find Full Text PDF

Binary Rhodium Atom Catalyst for Selective Catalytic Conversion of Methane to Methanol.

ACS Nano

September 2025

National & Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, PR China.

Using monometallic catalysts to selectively catalyze methane to methanol while suppressing the formation of liquid-phase overoxide products is beneficial for industrial applications. However, the balance between yield and selectivity over monometallic active sites remains challenging. This work proposes a strategy anchoring binary rhodium species to influence their surface dispersion properties.

View Article and Find Full Text PDF

Wetlands are a major source of methane emissions and contribute to the observed increase in atmospheric methane over the last 20 years. Methane production in wetlands is the final step of carbon decomposition performed by anaerobic archaea. Although hydrogen/carbon dioxide and acetate are the substrates most often attributed to methanogenesis, other substrates - such as methylated compounds - may additionally play important roles in driving methane production in wetland systems.

View Article and Find Full Text PDF