98%
921
2 minutes
20
Ductal carcinoma in situ (DCIS) and invasive breast cancer share many morphologic, proteomic, and genomic alterations. Yet in contrast to invasive cancer, many DCIS tumors do not progress and may remain indolent over decades. To better understand the heterogenous nature of this disease, we reconstructed the growth dynamics of 18 DCIS tumors based on the geo-spatial distribution of their somatic mutations. The somatic mutation topographies revealed that DCIS is multiclonal and consists of spatially discontinuous subclonal lesions. Here we show that this pattern of spread is consistent with a new 'Comet' model of DCIS tumorigenesis, whereby multiple subclones arise early and nucleate the buds of the growing tumor. The discontinuous, multiclonal growth of the Comet model is analogous to the branching morphogenesis of normal breast development that governs the rapid expansion of the mammary epithelium during puberty. The branching morphogenesis-like dynamics of the proposed Comet model diverges from the canonical model of clonal evolution, and better explains observed genomic spatial data. Importantly, the Comet model allows for the clinically relevant scenario of extensive DCIS spread, without being subjected to the selective pressures of subclone competition that promote the emergence of increasingly invasive phenotypes. As such, the normal cell movement inferred during DCIS growth provides a new explanation for the limited risk of progression in DCIS and adds biologic rationale for ongoing clinical efforts to reduce DCIS overtreatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592867 | PMC |
http://dx.doi.org/10.1101/2023.10.01.560370 | DOI Listing |
Adv Ther
September 2025
Sanofi, Gentilly, France.
Introduction: No head-to-head studies comparing the efficacy of avalglucosidase alfa (AVA) with cipaglucosidase alfa + miglustat (Cipa+mig) have been conducted in patients with late-onset Pompe disease (LOPD). Two indirect treatment comparisons (ITCs) were conducted to estimate the effects of AVA versus Cipa+mig.
Methods: ITCs were conducted using simulated treatment comparisons (STCs), adjusting for differences in prognostic factors and treatment effect modifiers.
Oncol Res
September 2025
Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
Objectives: The Sorbin and SH3 domain containing 1 (SORBS1), a protein linked to insulin signaling CBL interaction, was investigated for its role in pancreatic cancer apoptosis. This study explored polyphyllin H (PPH)'s ability to restore SORBS1-knockdown-mediated repair functions.
Methods: PANC-1 cells were divided into Blank, overexpression (OE), and knockdown groups.
Anal Biochem
September 2025
School of Computer Science and Engineering, Southeast University, Nanjing 210000, China.
In the complex process of gene expression and regulation, RNA-binding proteins occupy a pivotal position for RNA. Accurate prediction of RNA-protein binding sites can help researchers better understand RNA-binding proteins and their related mechanisms. And prediction techniques based on machine learning algorithms are both cost-effective and efficient in identifying these binding sites.
View Article and Find Full Text PDFOncol Rep
November 2025
Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China.
Radioresistance is a major obstacle to effective radiotherapy in breast cancer. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is involved in numerous biological processes associated with cancer; however, its specific role in mediating radioresistance in breast cancer remains poorly characterized. The present study first evaluated its expression profile and association with patient prognosis through bioinformatics analysis.
View Article and Find Full Text PDFDalton Trans
September 2025
Guangdong Provincial Key Laboratory of Pharmaceutical Preparations Research and Evaluation; School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
Copper serves as a crucial trace element in various biological systems. Copper ions form complexes with different ligands, amplifying reactive oxygen species (ROS) levels and promoting intracellular ROS accumulation in multiple cancer cell types. In this study, a copper(II) complex, dichlorido[4-(5-bromothiazol-2-yl)-2,2'-bipyridine] copper(II) (Cu1), was synthesized using a terpyridine derivative as the ligand.
View Article and Find Full Text PDF