Morphological and metabolic changes in microglia exposed to cadmium: Cues on neurotoxic mechanisms.

Environ Res

Department of Earth and Environmental Sciences, University of Milano- Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, Interuniversity Research Center, (MISTRAL), Italy.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microglial cells play a key role in protecting the central nervous system from pathogens and toxic compounds and are involved in the pathogenesis of different neurodegenerative diseases. Cadmium is a widespread toxic heavy metal, released into the environment at a rate of 30,000 tons/year by anthropogenic activities; it is easily uptaken by the human body through diet and cigarette smoke, as well as by occupational exposure. Once inside the body, cadmium enters the cells and substitutes to zinc and other divalent cations altering many biological functions. Its extremely long half-life makes it a serious health threat. Recent data suggest a role for heavy metals in many neurodegenerative diseases; however, the role of cadmium is still to be elucidated. In this work we report the investigation of cadmium toxicity towards murine BV2 microglial cells, a widely used model for the study of neurodegeneration. Results show that increasing cadmium concentrations increase oxidative stress, a proposed mechanism of neurodegeneration, but also that BV2 cells can keep oxidative stress under control by increasing glutathione reduction. Moreover, cadmium induces alterations of cell morphology and metabolism leading to mitochondrial impairment, without switching the cells to Warburg effect. Finally cadmium induces the release of proinflammatory cytokines, but does not markedly switch BV2 cells to M1 phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117470DOI Listing

Publication Analysis

Top Keywords

cadmium
8
microglial cells
8
neurodegenerative diseases
8
oxidative stress
8
bv2 cells
8
cadmium induces
8
cells
6
morphological metabolic
4
metabolic changes
4
changes microglia
4

Similar Publications

The streams of Alaska's Brooks Range lie within a vast (~14M ha) tract of protected wilderness and have long supported both resident and anadromous fish. However, dozens of historically clear streams have recently turned orange and turbid. Thawing permafrost is thought to have exposed sulfide minerals to weathering, delivering iron and other potentially toxic metals to aquatic ecosystems.

View Article and Find Full Text PDF

Cadmium (Cd) is a heavy metal that exhibits strong carcinogenic properties and promotes breast cancer (BC) progression. Autophagic flux dysfunction is involved in Cd-induced BC progression, but the underlying molecular mechanisms remain unclear. Here, it is observed that impaired autophagic flux and metabolic reprogramming are notable features related to Cd-induced proliferation, migration, and invasion in BC cell lines, including T-47D and MCF-7 cells.

View Article and Find Full Text PDF

Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.

Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.

View Article and Find Full Text PDF

Japonica is considered one of the better tasting varieties, so it is important to balance the quality and taste of japonica rice produced by moderate processing. This study analyzed the changes in bioactive components, heavy metal elements, and sensory quality of northern japonica rice after gradient milling, and constructed a comprehensive quality evaluation model for japonica rice with different degrees of milling. The results showed that as the degree of milling (DOM) increased from 0% to 10%, the bioactive components in japonica rice decreased, with dietary fiber (3.

View Article and Find Full Text PDF

Cadmium accumulation in different types of vegetable across China: Dietary exposure risk, and a novel method for determining soil cadmium thresholds.

J Hazard Mater

September 2025

State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

Cadmium (Cd) contamination in vegetables poses a potential risk to human health; thus an accurate soil Cd threshold is crucial for early warning to ensure safe production. In this study, a national-scale dataset of Cd contents in agricultural soils and vegetables in China was compiled to assess the dietary exposure risk, and a hybrid approach combining conditional inference trees (CITs) and species sensitivity distribution (SSD) was established to derive soil Cd thresholds. The results showed that amaranth, butterhead lettuce, Chinese cabbage, coriander, and garlic had higher Cd accumulation ability among 34 species studied.

View Article and Find Full Text PDF