Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sorafenib (SOR) is a multikinase inhibitor anticancer drug that is used in treating non-small cell lung cancer. In this work, we focused on developing nanomaterial-supported smart porous interfaces by following the molecular imprinting approach for the selective determination of SOR. Determination-based studies in the literature for SOR are limited, and they are chromatographic techniques-based; hence, there is a need in the literature to elaborate the selective and sensitive analysis/monitoring of SOR in both biological and pharmaceutical samples with more studies.

Results: The results showed that adding ZnO NPs enhanced the signal five times compared to the solo molecularly imprinted polymer (MIP). Under the optimized conditions, ZnO/AMPS@MIP-GCE showed a linear response in the concentration range between 1.0 × 10 and 1.0 × 10 M with LOD and LOQ values of 2.25 × 10 M and 7.51 × 10 M, respectively, in the serum sample. The selectivity study was conducted against common cations, anions, and compounds such as dopamine, paracetamol, ascorbic acid, and uric acid. Also, the imprinting factor (IF) analysis was performed on selected drug substances having structural similarities to SOR and the relative IF values of regorafenib, leflunomide, teriflunomide, nilotinib, axitinib, and dasatinib indicated the selectivity of the developed sensor for SOR. Finally, ZnO/AMPS@MIP-GCE was implemented to determine SOR in the spiked commercial human serum samples and tablet dosage form with bias% between -0.43 and + 0.66.

Significance And Novelty: This study is the first electrochemical study for the determination of SOR, and thanks to the ZnO NPs supported MIP sensor, it stands out in terms of both high sensitivity and superior selectivity. Also, this designed sensor provides controlled orientation of the template and complete removal of templates in a one-step process, allowing extremely low detection and quantification limits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341866DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
imprinted polymer
8
sor
8
determination sor
8
zno nps
8
designing electrochemical
4
sensor
4
electrochemical sensor
4
sensor based
4
based zno
4

Similar Publications

Amplified electrochemical detection of sulfadiazine based on Cu-BTC-encapsulated FeNi dual-atom catalysts with improved catalytic efficiency.

Anal Methods

September 2025

College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.

The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.

View Article and Find Full Text PDF

Rutin is a potent antioxidant with therapeutic value in managing vascular and inflammatory conditions. Its accurate quantification is critical for pharmaceutical quality control and food safety. In this study, rutin was employed as a template to construct surface molecularly imprinted magnetic nanozymes (MIPs@FeO-CoNi).

View Article and Find Full Text PDF

A versatile fluorescent molecularly imprinted nanosensor (MIPs@O-CDs) for profiling ciprofloxacin (CIP) was innovatively developed using a controllable post-imprinting modification strategy. High-affinity molecularly imprinted polymers (MIPs) as recognition elements granted nanosensor favorable anti-interference. Bright orange-emission carbon dots (O-CDs) as signal transducers demonstrated prominent reverse fluorescence response to CIP due to inner filter effect, ameliorating detection sensitivity and accuracy.

View Article and Find Full Text PDF

The pervasive concern regarding veterinary drug residues in food necessitates advanced detection solutions, particularly addressing limitations of conventional methods reliant on large-scale instrumentation that incur prolonged analysis duration, complex sample preparation, and lack of real-time on-site capability. A portable "single response-on" molecularly imprinted ratiometric fluorescent paper-based sensor was developed for quantifying fleroxacin (FLX) residues in animal-derived foods, wherein B, N-co-doped MXene quantum dot (B, N-MQD) was synthesized and combined with BCP-Eu as dual-emission fluorophores, while FLX- molecularly imprinted polymer (FLX-MIP) was engineered using functionalized Nano-SiO as the carrier. Concentration-dependent fluorescence enhancement at 574 nm was exhibited with invariant reference signal at 411 nm, achieving a 36-fold lower detection limit (0.

View Article and Find Full Text PDF

Redox-Active Polyphenol Red Molecularly Imprinted Polymers on Porous Gold Electrodes for Ultrasensitive, AI-Assisted Detection of Alzheimer's Biomarkers in Undiluted Biofluids.

Adv Healthc Mater

September 2025

David Price Evans Global Health and Infectious Diseases Group, Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7BE, UK.

Early diagnosis of Alzheimer's disease (AD) is hindered by the high cost, complexity, and centralization of current diagnostic platforms such as enzyme-linked immunosorbent assay (ELISA) and single-molecule array (SIMOA). Here, an integrated point-of-care (PoC) biosensing platform is reported based on redox-active polyphenol red molecularly imprinted polymers (pPhR MIPs) deposited on highly porous gold (HPG) electrodes for the ultrasensitive, reagent-free detection of phosphorylated tau 181 (p-tau 181) in undiluted plasma and serum. The unique electrochemical interface combines the signal-enhancing properties of HPG with the redox functionality of pPhR, eliminating the need for external redox probes.

View Article and Find Full Text PDF