Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

'Human neural stem cells' jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human neural stem cells (hNSCs) in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hNSCs, which is applicable to the quality control for hNSCs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that publication of the guideline will facilitate institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of hNSCs for clinical development and therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984100PMC
http://dx.doi.org/10.1111/cpr.13564DOI Listing

Publication Analysis

Top Keywords

neural stem
12
human neural
8
stem cells
8
requirements
6
stem
4
cells 'human
4
'human neural
4
stem cells'
4
cells' jointly
4
jointly drafted
4

Similar Publications

Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.

View Article and Find Full Text PDF

Human gastroids to model regional patterning in early stomach development.

Nature

September 2025

Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

In the adult brain, neural stem cells (NSCs) constitutively generate new neurons in specific neurogenic domains. Recent research has unveiled reactive neurogenesis, whereby brain injury triggers NSC activation, enhancing their differentiation potential and guiding progeny to injured areas. Our study provides evidence of alternative migration pathways for newborn neurons in the mouse subcortical forebrain, revealed by administration of a chemotherapeutic agent.

View Article and Find Full Text PDF

Engineering human neuronal diversity: Morphogens and stem cell technologies for neurodevelopmental biology.

Stem Cell Reports

September 2025

Child Study Center, Yale University, New Haven, CT 06520, USA; Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA. Electronic

A complex assortment of neuronal cells contributes to distinct functional circuits in the human brain. Such diversity is imposed upon pluripotent stem cells by a patterning process that begins much before the start of neurogenesis. Neural tube patterning relies on morphogens-diffusible signals that regulate transcription factor networks in progenitor cells, guiding spatial and temporal identity formation.

View Article and Find Full Text PDF