Structural insights into the functions of Raf1 and Bsd2 in hexadecameric Rubisco assembly.

Mol Plant

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China. Electronic address: cmliu@genet

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hexadecameric form I Rubisco, which consisting consists of eight large (RbcL) and eight small (RbcS) subunits, is the most abundant enzyme on earth. Extensive efforts to engineer an improved Rubisco to speed up its catalytic efficiency and ultimately increase agricultural productivity. However, difficulties with correct folding and assembly in foreign hosts or in vitro have hampered the genetic manipulation of hexadecameric Rubisco. In this study, we reconstituted Synechococcus sp. PCC6301 Rubisco in vitro using the chaperonin system and assembly factors from cyanobacteria and Arabidopsis thaliana (At). Rubisco holoenzyme was produced in the presence of cyanobacterial Rubisco accumulation factor 1 (Raf1) alone or both AtRaf1 and bundle-sheath defective-2 (AtBsd2) from Arabidopsis. RbcL released from GroEL is assembly capable in the presence of ATP, and AtBsd2 functions downstream of AtRaf1. Cryo-EM structures of RbcL-AtRaf1, RbcL-AtRaf1-AtBsd2, and RbcL revealed that the interactions between RbcL and AtRaf1 are looser than those between prokaryotic RbcL and Raf1, with AtRaf1 tilting 7° farther away from RbcL. AtBsd2 stabilizes the flexible regions of RbcL, including the N and C termini, the 60s loop, and loop 6. Using these data, combined with previous findings, we propose the possible biogenesis pathways of prokaryotic and eukaryotic Rubisco.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2023.10.011DOI Listing

Publication Analysis

Top Keywords

rubisco
8
hexadecameric rubisco
8
rbcl
7
structural insights
4
insights functions
4
functions raf1
4
raf1 bsd2
4
bsd2 hexadecameric
4
assembly
4
rubisco assembly
4

Similar Publications

Dual pathways of photosynthetic inhibition by nanoplastics: Light reaction blockade in soybean and carbon fixation enzyme suppression in corn.

Plant Physiol Biochem

September 2025

Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye

Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.

View Article and Find Full Text PDF

Antibiotic-induced perturbations in C-N metabolic networks, and associated gene pathways in soybean (Glycine max) seedlings.

J Hazard Mater

August 2025

School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Pro

Antibiotic contamination in agricultural systems via organic fertilizer application and livestock wastewater irrigation are threats to crop physiology. However, the phytotoxic mechanisms affecting the pivotal carbon-nitrogen (C-N) metabolic nexus remain unclear. In this study, we investigated florfenicol-induced perturbations in C-N metabolic networks and associated gene regulatory pathways in soybean (Glycine max) seedlings.

View Article and Find Full Text PDF

Distinct physiological and anatomical traits can lead to substantial variation in photosynthetic efficiency among plant varieties, which may, in turn, impact agronomically important traits. We conducted a comprehensive comparative analysis of leaf physiology, anatomy and biochemistry in Solanum lycopersicum (LEA) a modern inbred variety suited for the processing industry and Solanum pennellii (Lost accession LA5240) a drought-tolerant, green-fruited wild species to investigate differences in photosynthetic performance and stomatal physiology. Lost exhibited higher photosynthetic capacity due to both biochemical and anatomical features.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs), characterized by their unique structure and remarkable fluorescence properties, could affect physiological efficiency under heavy metal stress by contributing to metal detoxification and ion homeostasis at the cellular level. Thus, a pot experiment with a factorial arrangement (in three replicates) was laid out to investigate the effects of foliar application of CQDs (0, 2, 4, 6, and 8 mg L) under various cadmium levels (0, 25 and 50 mg kg) in Dracocephalum moldavica (dragonhead) plants. Foliar application of CQDs with 4 mg L⁻¹ concentration (optimal level) mitigated cadmium stress via an enhancement in vacuolar H+-ATPase activity and nutrient uptake.

View Article and Find Full Text PDF