98%
921
2 minutes
20
Introduction: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M flank tumors in an MHC-humanized rodent model.
Methods: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death-ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1-3) will be enrolled sequentially.
Perspective: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG.
Trial Registration: NCT04808245.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585906 | PMC |
http://dx.doi.org/10.1186/s42466-023-00282-4 | DOI Listing |
ACS Nano
September 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
Foot-and-mouth disease virus (FMDV), a critical pathogen in the global livestock industry, has long been a focal point of international disease control strategies. This study developed a nanoparticle-based FMDV vaccine platform. We fused the FMDV immunodominant epitope (VP1-G-H-loop) and T-cell epitope (T) with the nanoparticle scaffold (LS), efficiently producing the T-LS-LOOP nanoparticle vaccine using the prokaryotic expression system (BL21).
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.
Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.
View Article and Find Full Text PDFInfect Immun
September 2025
National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDFJ Oncol Pharm Pract
September 2025
Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.
Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.
View Article and Find Full Text PDF