Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Insulin acts on the liver via changes in gene expression to maintain glucose and lipid homeostasis. This study aimed to the Forkhead box protein K1 (FOXK1) associated gene regulatory network as a transcriptional regulator of hepatic insulin action and to determine its role versus FoxO1 and possible actions of the insulin receptor at the DNA level.

Methods: Genome-wide analysis of FoxK1 binding were studied by chromatin immunoprecipitation sequencing and compared to those for IR and FoxO1. These were validated by knockdown experiments and gene expression analysis.

Results: Chromatin immunoprecipitation (ChIP) sequencing shows that FoxK1 binds to the proximal promoters and enhancers of over 4000 genes, and insulin enhances this interaction for about 75% of them. These include genes involved in cell cycle, senescence, steroid biosynthesis, autophagy, and metabolic regulation, including glucose metabolism and mitochondrial function and are enriched in a TGTTTAC consensus motif. Some of these genes are also bound by FoxO1. Comparing this FoxK1 ChIP-seq data to that of the insulin receptor (IR) reveals that FoxK1 may act as the transcription factor partner for some of the previously reported roles of IR in gene regulation, including for LARS1 and TIMM22, which are involved in rRNA processing and cell cycle.

Conclusion: These data demonstrate that FoxK1 is an important regulator of gene expression in response to insulin in liver and may act in concert with FoxO1 and IR in regulation of genes in metabolism and other important biological pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641274PMC
http://dx.doi.org/10.1016/j.molmet.2023.101825DOI Listing

Publication Analysis

Top Keywords

insulin receptor
12
gene expression
12
foxk1 associated
8
associated gene
8
gene regulatory
8
regulatory network
8
insulin
8
hepatic insulin
8
insulin action
8
chromatin immunoprecipitation
8

Similar Publications

Overweight and obesity represent common chronic metabolic disorders in the general population, and observed trends describe a substantial growth in the prevalence of weight excess also among individuals with type 1 diabetes (T1D), the so-called 'lean phenotype' of diabetes. The sharp rise of weight excess and obesity-related cardio-nephron-metabolic burdens observed in T2D is expected to produce similar consequences in T1D, leading to the urgent need to endorse therapeutic protocols as in most parts of the World no adjunctive treatments are approved for T1D, making weight excess management challenging in these individuals. The notable results shown by newer glucagon-like peptide 1 receptor agonists (GLP-1RAs) and emerging dual agonists, especially while managing cardio-metabolic burdens, in T2D have encouraged fervent anecdotal and non-anecdotal research also in T1D, indicating that non-insulin injective agents can be effective and safe.

View Article and Find Full Text PDF

Current status of Liraglutide delivery systems for the management of type 2 diabetes mellitus.

Drug Deliv Transl Res

September 2025

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.

Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.

View Article and Find Full Text PDF

Lipid Metabolism and Immune Crosstalk in Fish Gut-Liver Axis: Insights from SOCS8 Knockout and Dietary Stress Models.

Fish Shellfish Immunol

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi

Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.

View Article and Find Full Text PDF

Nobiletin Alleviates Npy1r-Mediated Insulin Secretion Deficiency of Islet β-Cells via the Clock-Modulatory Signaling.

Mol Nutr Food Res

September 2025

Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.

Current research indicates that insulin secretion deficiency in β-cells contributes to Type 2 diabetes mellitus (T2DM), which is associated with neuropeptide Y receptor (Npy1r) overexpression from neuropeptide Y (NPY) system dysregulation. To date, limited literature has explored nobiletin (NOB) as a circadian modulator for restoring β-cell function through Npy1r regulation. This study investigates NOB's stimulatory effects on insulin secretion via Npy1r and clock-modulatory signaling to elucidate its underlying mechanism.

View Article and Find Full Text PDF

TNF as a mediator of metabolic inflammation and body-brain interaction in obesity-driven neuroinflammation and neurodegeneration.

Ageing Res Rev

September 2025

Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.

Body-brain interaction (BBI) plays a critical role in coordinating the communication between peripheral organs and the brain, contributing to the comorbidity of metabolic disorders and neurological disorders. In the context of obesity, one of the key mediators driving systemic and neuroinflammatory responses is the soluble form of tumor necrosis factor (TNF), which primarily signals through TNF receptor 1 (TNFR1) to regulate inflammation and cell death. In this review, we examine how TNF/TNFR1-mediated metabolic inflammation in obesity disrupts cellular homeostasis across multiple organ systems, including the brain.

View Article and Find Full Text PDF