Charge Dispersion Strategy for High-Performance and Rain-Proof Triboelectric Nanogenerator.

Adv Mater

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Triboelectric nanogenerator (TENG) is becoming a sustainable and renewable way of energy harvesting and self-powered sensing because of low cost, simple structure, and high efficiency. However, the output current of existing TENGs is still low. It is proposed that the output current of TENGs can be dramatically improved if the triboelectric charges can distribute inside the triboelectric layers. Herein, a novel single-electrode conductive network-based TENG (CN-TENG) is developed by introducing a conductive network of multiwalled carbon nanotubes in dielectric triboelectric layer of thermoplastic polyurethane (TPU). In this CN-TENG, the contact electrification-induced charges distribute on both the surface and interior of the dielectric TPU layer. Thus, the short-circuit current of CN-TENG improves for 100-fold, compared with that of traditional dielectric TENG. In addition, this CN-TENG, even without packing, can work stably in high-humidity environments and even in the rain, which is another main challenge for conventional TENGs due to charge leakage. Further, this CN-TENG is applied for the first time, to successfully distinguish conductive and dielectric materials. This work provides a new and effective strategy to fabricate TENGs with high output current and humidity-resistivity, greatly expanding their practical applications in energy harvesting, movement sensing, human-machine interaction, and so on.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202307918DOI Listing

Publication Analysis

Top Keywords

output current
12
triboelectric nanogenerator
8
energy harvesting
8
charges distribute
8
triboelectric
5
cn-teng
5
charge dispersion
4
dispersion strategy
4
strategy high-performance
4
high-performance rain-proof
4

Similar Publications

Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.

View Article and Find Full Text PDF

Jahn-Teller Distortion Enables Enhanced Piezoelectric Energy Harvesting Properties of a Metal-Pyrazolylborate Complex.

Inorg Chem

September 2025

College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Molecular piezoelectrics have garnered significant attention in energy harvesting and sensing fields due to their high intrinsic piezoelectricity, low elastic properties, and excellent solution processability. Recent efforts have primarily focused on rationally tuning the piezoelectric performance of these materials through the molecular predesign of organic components. However, the regulation of piezoelectric properties via the central metal ion has remained relatively underexplored.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF

Background: Conventional weed risk assessments (WRAs) are time-consuming and often constrained by species-specific data gaps. We present a validated, algorithmic alternative, the model, that integrates climatic suitability ( ), weed-related publication frequency (P) and global occurrence data ( ), using publicly available databases and artificial intelligence (AI)-assisted text screening with a large language model (LLM).

Results: The model was tested against independent weed hazard classifications for New Zealand and California.

View Article and Find Full Text PDF

Introduction: This bibliometric analysis aims to explore global trends, research hotspots, and future directions in multidrug resistance of multiple myeloma (MM), providing insights for overcoming resistance mechanisms and optimizing therapeutic strategies.

Methods: We analyzed 3300 publications indexed in the Web of Science Core Collection (2015-2024) using CiteSpace and VOSviewer. Multidimensional evaluations of countries/regions, institutions, authors, journals, and keywords were conducted, supplemented by visual network mapping to elucidate research dynamics and collaborative patterns.

View Article and Find Full Text PDF